您现在的位置是: 首页 > 教育改革 教育改革
职高数学高考,职高数学高考范围
tamoadmin 2024-05-28 人已围观
简介1.职高数学和普通高中数学,你知道有哪些区别吗?2.2022职高参加全国统一高考考几门课-职高高考试卷和普高试卷一样吗3.我是一名准高三的职高生,谁有职高数学公式,给我发一下谢谢4.职高和普高参加高考的区别5.普通高考的数学是高职高考的几倍6.职高高考和普高高考试卷一样的吗职业高级中学/高级职业中学(简称"职业高中"、"职高")在改革教育结构的基础上发展起来的中等职业学校,大部分由普通中学改建而成
1.职高数学和普通高中数学,你知道有哪些区别吗?
2.2022职高参加全国统一高考考几门课-职高高考试卷和普高试卷一样吗
3.我是一名准高三的职高生,谁有职高数学公式,给我发一下谢谢
4.职高和普高参加高考的区别
5.普通高考的数学是高职高考的几倍
6.职高高考和普高高考试卷一样的吗
职业高级中学/高级职业中学(简称"职业高中"、"职高")在改革教育结构的基础上发展起来的中等职业学校,大部分由普通中学改建而成,一般招收初中毕业生,学制基本以3年为主。培养目标与中等专业学校类似。职业高中属于初中毕业后考入,一般是由中学举办,中职学历。毕业后可以参加对口高考继续升学。职业高中是高中阶段的一部分,一般简称高中或者高中阶段。一般来说职高和普高(普通高中)并无太大区别。只是职业高中,要求技术性和职业性重要。而普高则要求文化性重要、职业高中简称"职高"。职高参加高考要参加语文,数学,英语三门主课,分别是150,150,100分。注意:以上三门都比普通高中简单;再就是你选择的专业,例如你选择的计算机,就会有计算机专业的课本,共计350分。
职高数学和普通高中数学,你知道有哪些区别吗?
职高高考考哪些科目介绍如下:
科目:语文、数学、英语。
高职类高考是一种招生方式,高等职业院校招收中等职业学校毕业生实行“3+专业技能课程证书”考试。“3”为语文、数学、英语三科,“专业技能课程证书”为教育部考试中心颁发的全国计算机等级证书、全国英语等级证书或广东省教育考试院组织考试并颁发的“广东省中等职业教育专业技能课程考试证书”。又称3+证书考试。
“3+专业技能课程证书”考试的语文、数学、英语等科目成绩以原始分形式呈现,各科满分值为150分,参加“3+专业技能课程证书”考试的考生的总分成绩由语文、数学、英语三科考试成绩合成。“专业技能课程证书”作为考生录取的资格。
扩展资料
1、符合下列条件的常住户口的居民,可以报考:
⑴遵守中华人民共和国宪法和法律;
⑵应届或往届中等职业学校学生(往届生需取得毕业证书);
⑶身体健康。
⑷服役期满退出现役、符合我省安置政策,具有高中(职中、中职、技校)毕业资格,能够正常参加学习的退役士兵。
2、下列人员不得报考:
⑴国家承认学历的高等学校的在校生;
⑵应届毕业生之外的高级、中等教育学校的在校生;
⑶因触犯刑律已被有关部门采取强制措施或正在服刑者。
2022职高参加全国统一高考考几门课-职高高考试卷和普高试卷一样吗
职高数学和普通高中的区别并不大,知识要点是基本相同的,就连大纲都很类似,可是职高数学的专业知识量并没那么多,例如导函数与定积分也没有规定学习培训,而普通高中毫无疑问要学习培训这种
职高数学知识要点和普通高中数学知识点有较大的区别,职高数学由点,法式直线方程,而普通高中数学课并没有。相对来说,职业高中要比普高考考试高校非常容易许多,只必须了解基本要素,了解知识要点就没那么多难点了。只不过是在参与考试的情况下,职高生只有在本省上本科院校,并且机会难得,我省只需前400人上下,而普通高中的学生们可以挑选去外省读大学,还可以上985高校。
不论是职高高考或是普通高中高考考试,数学课全是出现异常主要的。尽管于普通高中生来讲职高高考的数学课比较简单,可是对职高生而言或是有非常难度系数。得数专家学者得天地,数学课考试成绩不好那高考落榜的几率大大增加。
职高高考后学生们可以进到专科的自学环节,而普通高中高考后则可开展大学本科的自学环节。从中后期的发展趋势看来,职高生与普通高中生的区别或是极大的。
尽管职高数学与普通高中数学的知识点基本相同,一些大区域的专业知识几乎是一样的,可是职高数学的专业知识量相对性而言会少一些,例如极坐标系与参数方程,二项式定理、导函数与定积分等也没有规定,而普通高中数学课则是一定得学的。自然,职高数学中有极少数知识要点与普通高中数学课存有区别,例如直线方程里的点向式直线方程、点法式直线方程,很有可能大伙儿看见都不清楚啥观念,实际上便是空间向量与直线斜率有关的专业术语,在普通高中初中数学并没发生。整体而言,职高数学与普通高中数学思想方法上并没很大差别。
我是一名准高三的职高生,谁有职高数学公式,给我发一下谢谢
还有两个月不到的时间就要高考了,由于职高和普高还是有一丢丢区别的,所以每每考试的时候大家都是会好奇2022职高参加全国统一高考考几门课,下面小编就和大家一起看看职高高考试卷和普高试卷一样吗,2022职高参加全国统一高考考几门课
职高参加全国统一高考考语文、数学、英语这三门课程,达到一定分数线后,由本省自行选录。达到一定分数线后,由本省自行选录。有专科、本科两种选择。基本上考试采用“3+X”的形式,三门文化课语文、数学,英语为,“X”为专业综合。 “3+X”考试的语文、数学、英语等科目成绩以原始分形式呈现,各科满分值为150分,考生的总分成绩由语文、数学、英语三科考试成绩合成。“专业技能课程证书”作为考生录取的资格。职高高考试卷和普高试卷一样吗
视情况而定。
职高高考试卷和普高试卷一样吗是大家长套论的,不过这种要视情况而定,毕竟即使是职高也有学生是可以参加统一考试上大学的,剩下的便是上文所讲的对口高考职高高考试卷会不会简单一些
如果是对口高考题目肯定是简单的,相对普高来说,职高所学的文化知识比普高简单,并且职高最重要的是要学专业知识,高考时只要专业过了,文化课的考试还是比较容易的。普高主要学习文化知识,只是的难度要比职高大得多。职高和普高参加高考的区别
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
圆锥曲线包括椭圆,双曲线,抛物线
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
·圆锥曲线的参数方程和直角坐标方程:
1)直线
参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)
直角坐标:y=ax+b
2)圆
参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )
直角坐标:x^2+y^2=r^2 (r 为半径)
3)椭圆
参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )
直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1
4)双曲线
参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )
直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)
5)抛物线
参数方程:x=2pt^2 y=2pt (t为参数)
直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )
圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e·cosθ)
其中e表示离心率,p为焦点到准线的距离。
我是高考过来的,一般我们省是自主命题,最后一道大题通常就是圆锥曲线的综合型题目,这种题目的分值大约18分左右但是计算量相当的巨大,一般会设几个小问题,建议楼主视自己的情况而定,有取舍的做这些题目,而所谓的重点就是平常练习中的熟练程度了,高考的数学还是考察个人的解题熟练程度,所以想要取得高分还是要做一些有代表性的题目在注意总结考120以上应该没有问题,最后祝你金榜题名! 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同)
2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).
4、利用向量证在线a⊥b,就是分别在a,b上取向量 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.
6、利用向量求距离就是转化成求向量的模问题: .
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
首先该图形能建坐标系
如果能建
则先要会求面的法向量
求面的法向量的方法是
1。尽量在空中找到与面垂直的向量
2。如果找不到,那么就设n=(x,y,z)
然后因为法向量垂直于面
所以n垂直于面内两相交直线
可列出两个方程
两个方程,三个未知数
然后根据计算方便
取z(或x或y)等于一个数
然后就求出面的一个法向量了
会求法向量后
1。二面角的求法就是求出两个平面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积 :cos<a,b>=|n·n1|/|n|
如过在两面的同一边可以看到两向量的箭头或箭尾相交
那么二面角就是上面求的两法向量的夹角的补角
2。点到平面的距离就是求出该面的法向量 在平面上任取(除被求点在该平面的射影外)一点,
求出平面外那点和你所取的那点所构成的向量记为n1
点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求
设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν 则
线线平行 l‖m <=> a‖b <=> a=kb;
线面平行 l‖α <=> a⊥μ <=> a·μ=0;
面面平行 α‖β <=> μ‖ν <=> μ=kν
线线垂直 l⊥m <=> a⊥b <=>a·b=0;
线面垂直 l⊥α <=> a‖μ <=> a=kμ;
面面垂直 α⊥β <=> μ⊥ν <=> μ·ν=0
普通高考的数学是高职高考的几倍
职高和普高参加高考的区别主要在于考试科目和考试内容上。
职高高考的考试科目包括语文、数学、英语和专业课,其中语文、数学和英语考试内容与普通高考相同,但难度较低。而专业课考试则更加注重实践能力的考察,要求学生具备一定的专业技能和实践经验。
普通高考的考试科目包括语文、数学、英语、文综或理综,考试内容相对较广,难度也较高。此外,职高学生参加高考时,只能报考与自己所学专业相关的专业,而普通高考学生则可以根据自己的兴趣和特长选择任何专业。
高考的注意事项:
1、提前做好准备,确保考试用品齐全
在考试前,应该仔细阅读考试规则和注意事项,并准备好所需的考试用品,如准考证、身份证、2B铅笔、黑色签字笔、橡皮、尺子等。同时,要提前到达考场,避免因交通等原因耽误考试时间。
2、注意把握时间,不要迟到
高考时间非常紧张,每场考试都有规定的时间,考生需要提前到达考场,适应考场的环境和规则,避免因迟到而影响考试发挥。在考试过程中,要注意把握时间,尽量避免时间浪费,合理分配答题时间,保证答题的准确性和完整性。
3、注意答题技巧,先易后难
在考试时,要注意答题技巧,首先把容易的题目做完,把难的题目留到最后。对于比较难的题目,可以先做好标记,稍后回来再做,避免因一道题目而耽误整个考试的时间。同时,要注意审题,理解题目的意思,避免因误解题目而造成失分。
4、保持良好心态,充分自信
高考对于每个人来说都是一种挑战,但是保持良好心态、充分自信可以帮助考生发挥出自己的最佳水平。要相信自己已经做好了充分的准备,相信自己能够克服任何困难和挑战。同时,要注意调整心态,放松自己,避免因过度紧张而影响考试发挥。
职高高考和普高高考试卷一样的吗
没有准确的几倍,但是比职高难很多。
一些大板块的知识几乎是一样的,但是职高数学的知识量相对来讲会少一些,例如极坐标与参数方程,二项式定理、导数与定积分等都没有要求。
职高数学的难度简直可以算得上是非常简单,只需要同学们理解最基本的概念,并没有太多抽象的、高深的题目要大家理解,现学现用都可以;而普通高中数学的要求则刚好相反,理解概念只是基本前提,题目的难度、抽象性、综合性都够同学们吃一壶的,上课听不懂的,学不会的大有人在。
职高高考和普高高考试卷不一样。
职高的高考和普高高考试卷是不一样的。职高高考内容是语、数、外+专业。而普高是语、数、外+文综(或理综),其中语、数、外的试卷就不一样。
但是考试时间是一样的。因为试卷不一样,所以录取分数线也不一样。至于升学,普高是全国性的,而职高是需要对口的,但职高升学相对要容易些,因为这里的竞争力要小一些。
对口单招,又称对口高考,对口升学,是从中等职业学校毕业生招生,强调中等职业学校毕业生对口升高职的专业技能考试,以专业技能成绩为主要录取依据的招生办法。
对口单招探索了高职教育与高职教育相衔接的新型人才培养模式。它丰富了高等职业教育的内涵,促进了中等职业教育的发展,受到学校和社会的欢迎。单独招生考试是指在中等职业学校选拔优秀中专学生进行中考的考试。只适用于中等职业学校,如职业高中、职业中学、中等技术学校等。
职高和普高的区别是什么
一、在学制方面
职业高中全称职业高级中学或者高级职业中学,一般招收初中毕业生或者具有同等学力的学生,学制一般为三年,这点与高中是一致的,也都是全日制教育。
二、在学费方面
上职高的费用要比上普高的费用低,比上普高自费档更是低很多。国家还对职高生补贴3000元学费。
三、在授课内容方面
普高开设:语文、数学、英语、物理、化学、生物、地理、历史。职高开设:语文、数学、英语、专业课。职业高中的授课内容与普通高中的授课内容有些区别。
普通高中的授课内容,主要为语文、数学、外语以及物理化学生物或者政治历史地理。也就是3+X的模式。职业高中讲课内容为语文、数学、外语和专业知识和专业技能。