您现在的位置是: 首页 > 教育改革 教育改革
高考数学函数例题_高考函数的应用题
tamoadmin 2024-06-07 人已围观
简介1.一道高中年级的应用类函数题目!悬赏100分求解!2.求一次函数的练习题,至少二十道,不要抄袭(应用题多一点)好的追分。3.高一数学应用题求解4.高考数学应用题有哪些类型?5.高考数学函数答题方法和技巧6.高考函数的热点有哪些?7.函数速成的解题技巧.很急很急!!高手来!二次函数交点坐标公式是y=a(X-x1)(X-x2),将a、X1、X2代入y=a(X-x1)(X-x2),即可得到一个解析式,
1.一道高中年级的应用类函数题目!悬赏100分求解!
2.求一次函数的练习题,至少二十道,不要抄袭(应用题多一点)好的追分。
3.高一数学应用题求解
4.高考数学应用题有哪些类型?
5.高考数学函数答题方法和技巧
6.高考函数的热点有哪些?
7.函数速成的解题技巧.很急很急!!高手来!
二次函数交点坐标公式是y=a(X-x1)(X-x2),将a、X1、X2代入y=a(X-x1)(X-x2),即可得到一个解析式,这是y=ax?+bx+c因式分解得到的,将括号打开,即为一般式。X1、X2是关于ax的一元二次方程ax?+bx+c=0的两根,则交点为(x1,0)、(x2,0)。
二次函数是一种数学函数,该函数图像为一条关于直线x=-b/2a对称的曲线,该直线称为二次函数的对称轴。当a、b同号时,对称轴在y轴的左侧;当a、b异号时,对称轴在y轴的右侧。此外,c也影响着函数图像与y轴的交点。
二次函数有三种形式,分别是标准型、顶点型和一般型。标准型是指具有完整形式的二次函数,其表达式为y=ax?+bx+c;顶点型是指带有顶点坐标的二次函数,其表达式为y=a(x-h)?+k;一般型是指通过配方法变成标准型或顶点型的二次函数。
二次函数在数学中有着广泛的应用,它可以用来解决很多问题。例如,可以用二次函数来描述自由落体运动、圆周运动、抛物线运动等物理现象,也可以用二次函数来解决一些实际问题的最优解,如最短路线问题、最大利润问题等。
此外,二次函数还是中考和高考的重要内容之一。在中考中,二次函数通常作为压轴题出现,难度较大;在高考中,二次函数也占有相当重要的地位,不仅出现在选择题、填空题中,还可能出现在应用题和综合题中。
二次函数的意义:
1、定义。一般地,形如y=ax?+bx+c的函数,叫做二次函数。
2、图象和性质。二次函数的图像都是开口向上或者向下的抛物线,都有一条垂直于x轴的对称轴,都有一个或者最高或者最低的顶点。
3、最小值或最大值。当a>0时,二次函数的最小值为c;当a<0时,二次函数的最大值为c。
4、对称轴和对称中心。二次函数的对称轴为直线x=-b/2a,对称中心为顶点。
一道高中年级的应用类函数题目!悬赏100分求解!
三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+ 当sin(2x+)=-1时,y取最小值2-,此时x的集合。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a, 令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1) (1) 若-a<-1时,即a>1时, 在t=-1时,取最大值M=a。 (2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a。 (3) 若-a>1,即a<-1时,在t=1时,取大值M=-3a。 4.y=型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。 例4.求函数y=的最大值和最小值。 解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ)=, ∵ |sin(x+φ)|≤1,∴≤1,解出y的范围即可。 解法2:表示的是过点(2, 2)与点(cosx, sinx)的斜率,而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。 解法3:应用万能公式设t=tan(),则y=,即(2-3y)t2-2t+2-y=0, 根据Δ≥0解出y的最值即可。 5.y=sinxcos2x型的函数。 它的特点是关于sinx,cosx的三次式(cos2x是cosx的二次式)。因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。 例5.若x∈(0,π),求函数y=(1+cosx)·sin的最大值。 解:y=2cos2·sin>0, y2=4cos4sin2 =2·cos2·cos2·2sin2 所以0<y≤。 注:本题的角和函数很难统一,并且还会出现次数太高的问题。 6.含有sinx与cosx的和与积型的函数式。 其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数来求解
</A>
求一次函数的练习题,至少二十道,不要抄袭(应用题多一点)好的追分。
首先,楼上的解法很不错,其实小学奥数学得好的人就应该会了,不用高中生。
他用的正是小学奥数“牛吃草问题”的解法。
下面我给你一个函数的解法。
设经过t小时后,水库内还有水y。另设水库原来有水a,每小时进水p,每个闸门每小时放水q,开放闸门数为n
那么,有
y1=a+30p-30q
y2=a+10p-10*2q
y1=y2=警戒水量
所以q=2p
那么y1=a-30p
则y与t的函数关系
y=a+p*t-n*2p*t=a-p*(2n-1)*t=a-p*3(2n-1)<=a-30p
n>=5.5
取
n=6
说明,这里只能入,不能舍。即使n=5.1,也要取n=6,否则做不到。
高一数学应用题求解
7、小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a、b分别表示两人跑的路程与小明追赶时间的关系,根据图象判断:小明的速度比小强的速度每秒快
A、1米 B、1.5米 C、2米 D、2.5米
8、某日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水 立方米,水费为 元,则 与 的函数关系用图象表示正确的是
9、 如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量()
A 小于3吨 B 大于3吨C 小于4吨 D 大于4吨
10、如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )
A、1个 B、2个 C、3个 D、4个
11、某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.
(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式:
(2)写出会员卡租碟方式应付金额y2(元 )与租碟数量x(张)之间的函数关系式:
(3)小彬选取哪种租碟方式更合算?
12、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) 15 20 30 …
y(件) 25 20 10 …
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式:
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?
13、图9是某汽车行驶的路程S(km)与时间t(min)
的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是
(2)汽车在中途停了多长时间?
(3)当16≤t≤30时,求S与t的函数关系式.
14、如图15—1和15—2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.
(1)如图15—1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;
(2)如图15—2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?
(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?
15、在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。下面是蟋蟀所叫次数与温度变化情况对照表:
蟋蟀叫次数 … 84 98 119 …
温度(℃) … 15 17 20 …
(1)根据表中数据确定该一次函数的关系式;
(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?
16、某地电话拨号入网有两种收费方式,用户可以任选其一:
(A)计时制:0.05元/分; (B) 包月制:50元/月(限一部个人住宅电话上网).
此外,每一种上网方式都得加收通信费0.02元/分.
(1)请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间x(小时)之间的函数关系式: 计时制: 包月制:
(2) 若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
17、某公司市场营销部的营销员的个人月收入与该营销员每月的销量成一次函数关系,其图象如图所示. 根据图象提供的信息,解答下列问题:
(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式:
(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.
18、宁安市与哈尔滨市两地相距360千米.甲车在宁安市,乙车在哈尔滨市,两车同时出发,相向而行,在A地相遇.为节约费用(两车相遇并换货后,均需按原路返回出发地),两车换货后,甲车立即按原路返回宁安市.设每车在行驶过程中速度保持不变,两车间的距离 (千米)与时间 (小时)的函数关系如图所示.根据所提供的信息,回答下列问题:
⑴甲车的速度: ;乙车的速度: ;
⑵说明从两车开始出发到5小时这段时间乙车的运动状态.
19、某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元。
(1)分别写出该公司两种购买方案的付款 (元)与所购买的水果质量 (千克)之间的函数关系式,并写出自变量 的取值范围。
(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。
20、如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5)。
(1)直接写出B点坐标;
(2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1∶3两部分,求直线CD的解析式;
21、请先阅读下面一段文字,然后解答问题。
初中数学课本中有这样一段叙述:“要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零。”由此可见,要判断两个代数式的值的大小,只要考查它们的差就可以了。
问题:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不同),甲每次购买粮食100千克,乙每次购粮食用去100元。
设甲、乙两人第一次购买粮食的单价为每千克x元,第二次购买粮食的单价为y元。
(1).用含x、y的代数式表示:甲两次购买粮食共需付款 元;乙两次购买 千克粮食。若甲两次购粮的平均单价为每千克Q1元,乙两次购粮的平均单价为每千克Q2元,则Q1= ,Q2= .
(2).若规定:谁两次购粮的平均价低,谁的购粮方式就更合算.请你判断甲、乙两人的购粮方式哪一个更合算些,并说明理由.
22、某通讯移动通讯公司手机费用有A、B两种计费标准,如下表:
月租费(元/部) 通讯费(元/分钟) 备注
A种收费标准 50 0.4 通话时间不足1分钟按1分钟计算
B种收费标准 0 0.6
设某用户一个月内手机通话时间为x分钟,请根据上表解答下列问题:(1)按A类收费标准,该用户应缴纳y1= 元;按B类收费标准,该用户应缴纳y1= 元;(用含x的代数式表示)(2)如果该用户每月通话时间为300分钟,应选择哪种收费方式?(3)如果该用户每月手机费用不超过90元,应选择哪种收费方式?
23、某人从A城出发,前往离A城30千米的B城。现在有三种车供他选择:①自行车,其速度为15千米/时;②三轮车,其速度为10千米/时;③摩托车,其速度为40千米/小时。
(1)用哪些车能使他从A城到达B城的时间不超过2小时,请说明理由。
(2)设此人在行进途中离B城的路程为s千米,行进时间为小时,就(1)所选定的方案,试写出s与t的函数关系式(注明自变量t的取值范围):
(3)在图7所给的平面直角坐标系中画出此函数的图像。
24、某公司到果园基地购买某种优质水果慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案。甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回。已知该公司租车从基地到公司的运输费为5000元。
(1)分别写出该公司两种购买方案的付款y(元)与购买的水果量x(千克)之间的函数关系式,并写自变量x的取值范围。
甲方案:
乙方案:
(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由。
25、已知某山区的平均气温与该山的海拔高度的关系见下表:
海拔高度(单位"米") 0 100 200 300 400 ...
平均气温(单位"℃) 22 21.5 21 20.5 20 ...
(1)若海拔高度用 (米)表示,平均气温用 (℃)表示,试写出 与 之间的函数关系式;
(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?
26、某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式.(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
27、通过市场调查,一段时间内某地区特种农产品的需求量y(千克)与市场价格x(元/千克)存在下列函数关系式:y= (0<x<100);又已知该地区农民的这种农产品的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<100),现不计其它因素影响,如果需求数量y等于生产数量z时,即供需平衡,此时市场处于平衡状态.
(1)根据以上市场调查,请你分析当市场处于平衡状态时,该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?
(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z与市场价格x的函数关系发生改变,而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a(0<a<25)元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了?变化多少?
28、 (1) 甲品牌拖拉机开始工作时,油箱中有油30升.如果每小时耗油6升,求油箱中的余油量y(升)与工作时间x(时)之间的函数关系式.
(2) 如图,线段AB表示乙品牌拖拉机在工作时油箱中的余油量y(升)与工作时间x(时)之间的函数关系的图象. 若甲、乙两种品牌的拖拉机在售价、质量、性能、售后服务等条件上都一样.根据图象提供的信息,你愿意购买哪种品牌的拖拉机,并说明理由.
29、4×100米拉力赛是学校运动会最精彩的项目之一。图10中的实线和虚线分别是初三?一班和初三?班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计)。
问题:
⑴初三?二班跑得最快的是第______接力棒的运动员;
⑵发令后经过多长时间两班运动员第一次并列?
高考数学应用题有哪些类型?
字丑哈别介意。对于那个奇函数的问题,我是这么想的,要看定义域。比如x分之一,因为它的定义域就是x≠0,所以他不能取到零。而对于其他情况,如果定义域取到零,y就是等于零。
高考数学函数答题方法和技巧
应用题是高考中的重点之一,几乎每个省市,每年的高考试卷都有应用题出现,因此,总结高考数学应用题的常见类型,分析其解题模式,对学生有针对性地备战高考具有十分重要的意义。
一、函数、不等式类
此种类型是高考应用题的重点之一,依托函数多为分段函数、指数函数、二次函数及不等式组等。主要应用问题为极值问题,例如,生产成本的最小化、建筑材料的最少化、利润的最大化等。历年高考真题有2011四川理科卷第9题,2011湖北理科卷第11题,2000年全国卷等21题等。
解答此类应用题的关键和切入点是准确建立函数模型,这要求学生首先要明确实际问题的取值范围,认真分析题目中的重点词汇及数量关系,对题干中给出的已知量、未知量及常量进行归类有梳理,从而建立函数或不等式模式,进而解答试题。
二、概率型
此种类型应用题数量在高考数学试卷中所占比例最大,但难度不大,主要考查基本的概率知识,所涉及的应用问题非常多,例如,密码破译、不同等级产品的概率、骰子的点数等。例如,2010年江苏卷第22题,2011年全国卷第19题,2012陕西理科卷第20题等。
此类问题一般较为简单,主要考查学生对概率相关概念的掌握程度及公式的运用技巧。基本思路是在认真阅读题干的基础上分析出试题所考查的是何种变量或事件,然后运用此种变量或事件的公式去解答即可。此外,还应注意逆向思维的运用和结果的验证。
三、数列型
此种类型是应用题中最难的一类,尤其是与不等式问题结合之后。所考查的数列基本知识有初始项的提取、通项公式的求取、递推公式及前n项的和与某一项的关系等。所依托的实际问题涉及金融、平均增长率、等量增减等多个方面。例如,2005年春季上海第20题,2004年福建高考理科卷第20题等。
解答此类问题的关键是确定数列的类型,在此基础上根据题意构建数列的通项公式或递推公式,然后利用选定系数法或递推关系求解。
四、几何型
此种类型也是高考中的“大户”,借助的数学知识主要为三角函数,依托的实际问题涉及物理、测量、天文、航海等多个领域。例如,2010年江苏卷第17题,2010陕西高考理科第17题,2010福建高考理科第19题。
解答此类型应用题的关键是抽取数学模型,若没有示意图的应首先根据题意画出示意图,然后运用三角函数等相关知识解答即可。
此外,高考中数学应用题型还有集合型、立体几何型、解析几何型等,限于篇幅在此不做介绍。其实无论何种类型,应用题都应遵循审题—建模—求解—还原的基本思路。
高考函数的热点有哪些?
#高三# 导语怎么答好高考数学函数题? 整理了高考数学函数题答题技巧和方法,供参考。
高考函数体命题方向
高考函数与方程思想的命题主要体现在三个方面
①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;
②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;
③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。
高考数学函数题答题技巧
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
可以得到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
函数的性质与图象
函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.
3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.
这部分内容的重点是对函数单调性和奇偶性定义的深入理解.
函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.
对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.
这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.
函数速成的解题技巧.很急很急!!高手来!
原创/O客
从近五年高考数学试题全国和各省市卷看,高考函数热点问题集中在四个关键词:导数应用、与不等式综合、三角函数应用 、函数模型应用.
●导数应用. 频繁出现的考点有:求切线;零点与导数,利用导数求极值或单调性,进而利用零点存在性、惟一性定理判断零点个数;导数法研究三次函数的图象和性质,尤其它的极值与零点关系;
再求导问题,即对导数或其部分进行再求导,不是判别凸凹性,而是求解导数的单调性或极值,进而判断导数的符号和零点.
两次求导屡见不鲜,三次求导已露真容.
例如(2013·广东)设函数f(x)=(x-1)e^x-kx^2(k∈R). 当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.
由于解析式和区间均含有参数,本例的实质是(当参数k变化时)求动曲线在动区间上的最大值问题,颇具难度.在解题过程中,我们不仅三次构造辅助函数,而且有三次求导运算.
我们知道,函数f(x)在闭区间[0,k]上的最大值,只能在区间端点或极大值点取得. 因此,我们先讨论函数f(x)在这个区间上的单调性及极值,首先对f(x)求导,并得到驻点0和ln(2k).为判断驻点是否在这个区间内,需要比较k与ln(2k)的大小,构造辅助函数g(x)并求导(第二次),当推得最大值在端点产生时,需要比较f(0)、f(k)的大小,构造函数f(k)-f(0),并用它的部分构造辅助函数h(x)并求导(第三次). 最终,巧妙地用图象法,比较了e^k与2k+1的大小,从而避免了第四次求导.
● 函数与不等式综合. 往往用导数法证明含参数的不等式.
● 三角函数. 利用三角函数图象、性质、公式求解正弦型函数y=Asin(ωx+φ)的性质及参数,或解三角形.
●利用对数、指数、幂、三角函数模型解决实际问题。
●抽象函数问题.
……
以上内容包含于《函数系列专题讲座》一书. 该书分为函数概念、性质、专题、应用、简易函数、初等函数、派生函数、导函数等8章. 贯通初中、高中、高考. 其全面性、综合性、突重性、时效性独树一帜. 由O客编著,21万字,江西科技出版社出版. 联系2836395133@qq.com
如果你想速成,就多做题,记题型.效果明显些.不过忘的也快.高中题型不是很多,如果记忆力好的话就比较容易了
浅论关于三角函数的几种解题技巧
本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下:
一、关于 的关系的推广应用:
1、由于 故知道 ,必可推出 ,例如:
例1 已知 。
分析:由于
其中, 已知,只要求出 即可,此题是典型的知sin -cos ,求sin cos 的题型。
解:∵
故:
2、关于tg +ctg 与sin ±cos ,sin cos 的关系应用:
由于tg +ctg =
故:tg +ctg , ,sin cos 三者中知其一可推出其余式子的值。
例2 若sin +cos =m2,且tg +ctg =n,则m2 n的关系为( )。
A.m2=n B.m2= C. D.
分析:观察sin +cos 与sin cos 的关系:
sin cos =
而:
故: ,选B。
例3 已知:tg +ctg =4,则sin2 的值为( )。
A. B. C. D.
分析:tg +ctg =
故: 。 答案选A。
例4 已知:tg +ctg =2,求
分析:由上面例子已知,只要 能化出含sin ±cos 或sin cos 的式子,则即可根据已知tg +ctg 进行计算。由于tg +ctg =
,此题只要将 化成含sin cos 的式子即可:
解: = +2 sin2 cos2 -2 sin2 cos2
=(sin2 +cos2 )- 2 sin2 cos2
=1-2 (sin cos )2
=1-
=
=
通过以上例子,可以得出以下结论:由于 ,sin cos 及tg +ctg 三者之间可以互化,知其一则必可知其余二。这种性质适合于隐含此三项式子的三角式的计算。但有一点要注意的;如果通过已知sin cos ,求含 的式子,必须讨论其象限才能得出其结果的正、负号。这是由于( )2=1±2sin cos ,要进行开方运算才能求出
二、关于“托底”方法的应用:
在三角函数的化简计算或证明题中,往往需要把式子添加分母,这常用在需把含tg (或ctg )与含sin (或cos )的式子的互化中,本文把这种添配分母的方法叫做“托底”法。方法如下:
例5 已知:tg =3,求 的值。
分析:由于 ,带有分母cos ,因此,可把原式分子、分母各项除以cos ,“造出”tg ,即托出底:cos ;
解:由于tg =3
故,原式=
例6 已知:ctg = -3,求sin cos -cos2 =?
分析:由于 ,故必将式子化成含有 的形式,而此题与例4有所不同,式子本身没有分母,为了使原式先出现分母,利用公式: 及托底法托出其分母,然后再分子、分母分别除以sin ,造出ctg :
解:
例7 (95年全国成人高考理、工科数学试卷)
设 ,
求: 的值
分析:此题是典型已知含正弦函数的等式求含正切、余切的式子,故要用“托底法”,由于 ,故 ,在等式两边同除以 ,托出分母 为底,得:
解:由已知等式两边同除以 得:
“托底”适用于通过同角的含正弦及余弦的式子与含正切、余切的式子的互化的计算。由于 , ,即正切、余切与正弦、余弦间是比值关系,故它们间的互化需“托底”,通过保持式子数值不变的情况下添加分母的方法,使它们之间可以互相转化,达到根据已知求值的目的。而添加分母的方法主要有两种:一种利用 ,把 作为分母,并不改变原式的值,另一种是通过等式两边同时除以正弦或余弦又或者它们的积,产生分母。
三、关于形如: 的式子,在解决三角函数的极值问题时的应用:
可以从公式 中得到启示:式子 与上述公式有点相似,如果把a,b部分变成含sinA,cosA的式子,则形如 的式子都可以变成含 的式子,由于-1≤ ≤1,
所以,可考虑用其进行求极值问题的处理,但要注意一点:不能直接把a当成sinA,b当成cosA,如式子: 中,不能设sinA=3,cosA=4,考虑:-1≤sinA≤1,-1≤cosA≤1,可以如下处理式子:
由于 。
故可设: ,则 ,即:
∴
无论 取何值,-1≤sin(A±x)≤1,
≤ ≤
即: ≤ ≤
下面观察此式在解决实际极值问题时的应用:
例1(98年全国成人高考数学考试卷)
求:函数 的最大值为(AAAA )
A. B. C. D.
分析: ,再想办法把 变成含 的式子:
于是:
由于这里:
∴
设:
∴
无论A-2x取何值,都有-1≤sin(A-2x)≤1,故 ≤ ≤
∴ 的最大值为 ,即答案选A。
例2 (96年全国成人高考理工科数学试卷)
在△ABC中,已知:AB=2,BC=1,CA= ,分别在边AB、BC、CA上任取点D、E、F,使△DEF为正三角形,记∠FEC=∠α,问:sinα取何值时,△EFD的边长最短?并求此最短边长。
分析:首先,由于 ,可知△ABC为Rt△,其中AB为斜边,所对角∠C为直角,又由于 ,则∠B=
90°—∠A=60°,由于本题要计算△DEF的最短边长,故必要设正△DEF的边长为 ,且要列出有关 为未知数的方程,对 进行求解。观察△BDE,已知:∠B=60°,DE= ,再想办法找出另两个量,即可根据正弦定理列出等式,从而产生关于 的方程。在图中,由于EC= ?cosα,则BE=BC-EC=1- ?cosα。
而∠B+∠BDE+∠1=180°
∠α+∠DEF+∠1=180° ∠BDE=∠α
∠B=60°,∠DEF=60°
∴在△BDE中,根据正弦定理:
在这里,要使 有最小值,必须分母: 有最大值,观察:
∴
设: ,则
故:
∴ 的最大值为 。
即: 的最小值为:
而 取最大值为1时,
∴
即: 时,△DEF的边长最短,最短边长为 。
从以上例子可知,形如 适合于计算三角形函数的极值问题。计算极值时与式子的加、减是无关,与 的最值有关;其中最大值为 ,最小值为 。在计算三角函数的极值应用题时,只要找出形如 的关系式,即能根据题意,求出相关的极值。
三角函数知识点解题方法总结
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90?,90?)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=?
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、见“高次”,用降幂,见“复角”,用转化.
1.cos2x=1-2sin2x=2cos2x-1.
2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等
角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2A=2sinA*cosA
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)+cos(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
倒数关系: 商的关系: 平方关系:
tanα ?cotα=1
sinα ?cscα=1
cosα ?secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
要文档的就采纳,我给你