您现在的位置是: 首页 > 教育改革 教育改革
2017重庆高考数学最后一题答案解析,2017重庆高考数学最后一题
tamoadmin 2024-06-16 人已围观
简介1.17年高考数学是怎么了2.重庆2023高考数学难不难3.2017年高考数学必考等差数列公式4.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到? 导语:高考数学选择题分值大,占据高考数学试卷的半壁江山,而且其题目的概括性强,小巧灵活,最后几道题也有一定的难度,所以选择题对于高考数学至关重要,那么想要快准狠地拿下数学选择题,该怎么做呢,我为你分享技
1.17年高考数学是怎么了
2.重庆2023高考数学难不难
3.2017年高考数学必考等差数列公式
4.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?
导语:高考数学选择题分值大,占据高考数学试卷的半壁江山,而且其题目的概括性强,小巧灵活,最后几道题也有一定的难度,所以选择题对于高考数学至关重要,那么想要快准狠地拿下数学选择题,该怎么做呢,我为你分享技巧。
2017高考数学选择题秒杀大法一、高考数学选择题秒杀法
(一)? 直接求解法
大法解读
直接求解法――它是直接从题设条件出发,运用已知公理、定理、定义、公式和法则,通过一系列的逻辑推理得出题目的正确结论,再在与选择支的对照中选出正确答案的序号的方法。它是选择题的主要解题方法,它的实质就是将选择题等同于解答题求解。
(二)? 验证法
大法解读
所谓?验证法?,就是将选择支所提供的结论代入题干进行运算或推理,判断其是否符合题设条件,从而排除错误选择支,得到正确答案的一种选择题解法。
(三)?数形结合法
大法解读
数形结合法是指在处理数学问题时,能准确地将抽象的数学语言与直观的几何图形有机结合起来进行思考,通过?以形助数?、?以数辅形?,使抽象思维与形象思维相结合,从而实现化抽象为直观、化直观为精确,并达到简捷解决问题的方法。数形结合法在解决数学问题中具有十分重要的意义。
(四)? 特例法
大法解读
所谓?特例法?,就是利用满足题设的一些特例(包括特殊值、特殊点、特殊图形、特殊位置等)代替普遍条件,得出特殊结论,以此对各选择支进行检验与筛选,从而得到正确选择项的方法。值得注意的是使用特例法时,若有两个或三个选择支符合结论,应再选择特例检验或用其他方法求解。当然这也说明恰当地选择特例,将有利于提高解题的准确性和简捷性。
(五)?排除法
大法解读
?排除法?是根据高考数学选择题?四选一?的特点,通过分析、推理、计算、判断,排除或者说淘汰错误的选择支,缩小其选择的范围,进而求得正确答案的方法。排除法适用于定性型或不易直接求解的`选择题。当题设条件较多时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,直至选出正确项。此法往往与?特例法?、?验证法?、?数形结合法?等相结合使用。
(六)? 逻辑推理法
大法解读
所谓?逻辑推理法?,是指巧妙的运用逻辑推理方法,排除错误选项或直接选取正确选项,达到快速解题的目的。在实际使用中,一般注意包括如下情形:
1、特征分析法:根据题目所提供的信息(含题设和选择支),发现其在数值特征、结构特征、位置特征等方面的联系与区别,进行快速推理,达到解题目标。
2、蕴涵关系推断法:通过对选择支的分析,发现其相互联系与区别,特别是相互的蕴涵关系,达到否定谬误项,选出正确项的目的。
3、定性分析:通过定性分析,比较差异,发现解决问题的途径。
(七)? 估算法
大法解读
所谓?估算法?,即通过对有关数据进行简单运算,或扩大或缩小,从而对运算结果确定出一个范围或一个估计,达到选出正确选项目的的方法。估算法对于选项为数值的问题具有十分重要意义,它可以避免许多的推导过程与繁杂的计算,减少了计算量,节省了时间,但思维层次要求高,是我们研究与解决问题的一种重要的方法。
二、高考数学选择题十大秒杀技巧
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
?
17年高考数学是怎么了
太明显是假的了。第一张图最下面的滚动消息位置的小字里,都出现“亮瞎”这样的字眼了,有点常识都能看出是恶搞的好吗?左下角那个地球根本没转看不出来?
实在是无法理解“某涯”上一群人对这个杨同学的冷嘲热讽……是不是真以为人家杨同学情商没自己高?真相是,图就是他自己去照的、自己P的、自己发到朋友圈图个乐儿。是真不懂什么叫创意什么叫幽默吗?
果然幽默是“剩余的智慧”,有些人啊,看来是真没剩下的份儿~如果发表观点前连鉴别事情真伪的能力都没有,又有什么资格品头论足?
重庆2023高考数学难不难
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。
体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。
高考数学必考知识点归纳如下
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
2017年高考数学必考等差数列公式
重庆2023高考数学难不难如下:
2023重庆高考数学试题难度适中,重庆的考生结束数学考试后表示,今年的重庆高考数学试题难度还可以,难度在接受的范围内。
教育部2023高考数学难度趋势:不会大幅提升,但也不会比2022年简单太多。
普通高等学校招生全国统一考试(Nationwide Unified Examination for Admissions to General Universities and Colleges),简称“高考”,是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。
普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华人民共和国公民。
招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划陆耐和扩招,德智体美劳全面衡量,择优录取。2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分乱友项目哗悉槐。
2016年,教育部严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。2017年4月7日教育部、中国残联关于印发《残疾人参加普通高等学校招生全国统一考试管理规定》的通知。
考试注意事项:
1、开考信号发出后才能开始答题。
2、在考场内须保持安静,不得吸烟、不得喧哗,自觉遵守考试纪律。
3、考试中,不准交头接耳、左顾右盼、打手势、做暗号,不准偷看、抄袭或有意让他人抄袭,不准传抄答案或交换试卷、草稿纸,不得自行传递文具、用品等。
4、考生提问须先举手,得到允许后,可提问有关试卷字迹不清、卷面缺损、污染等问题。
2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)?公差
前n项的和Sn=首项?n+项数(项数-1)公差/2
公差d=(an-a1)?(n-1)
项数=(末项-首项)?公差+1
数列为奇数项时,前n项的和=中间项?项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差?项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n?2
即(首项+末项)?项数?2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)?公差
项数=(末项-首项)?公差+1
首项=末项-(项数-1)?公差
和=(首项+末项)?项数?2
差:首项+项数?(项数-1)?公差?2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2?和?项数-末项
末项=2?和?项数-首项
末项=首项+(项数-1)?公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+?99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q?N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)
f'(x)=2ax+(2-a)-1/x
=(2ax^2+(2-a)x-1)/x
=(2x-1)(ax+1)/x
a>1
令f'(x)>=0
x<=-1/a或x>=1/2
定义域是x>0
∴x>=1/2
增区间是[1/2,+∞),减区间是(0,1/2]
当1/a>=1/2时
f(x)在区间[1/a,1]内的最大值
=f(1)
=a+2-a-0
=2不是ln3
∴1/a<1/2
a>2
f(x)在区间[1/a,1]内的最大值
=f(1/a)
=a*1/a^2+(2-a)/a-ln(1/a)
=1/a+2/a-1+lna
=3/a-1+lna
=ln3
∴a=3符合a>2
综上a=3
如果您认可我的回答,请点击“为满意答案”,祝学习进步!