您现在的位置是: 首页 > 教育改革 教育改革

2017理科数学高考大纲,2017高考数学理科真题

tamoadmin 2024-06-16 人已围观

简介1.2017年高考二轮复习数学学科需要注意哪些2017年高考数学试卷具体特点紧扣考纲,核心突出数学文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,基本上各占22分,共占110分。数列考察等差等比数列、和项关系递推公式及求和;三角解答题以解三角形两类题型出现,加上三角恒等变换与图象性质两道选填题;立几考察三视图、空间几何体的计算及平

1.2017年高考二轮复习数学学科需要注意哪些

2017理科数学高考大纲,2017高考数学理科真题

2017年高考数学试卷具体特点

紧扣考纲,核心突出

数学文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,基本上各占22分,共占110分。数列考察等差等比数列、和项关系递推公式及求和;三角解答题以解三角形两类题型出现,加上三角恒等变换与图象性质两道选填题;立几考察三视图、空间几何体的计算及平行、垂直的,夹角、体积、表面积的计算,解几考察三种圆锥曲线与直线的综合问题;函数则考察零点、图像、导数、单调性与最值等问题,仍属压轴题。

立足实际,注重应用

命题强调数学的应用,既考察了数学知识与方法在学科内的应用,也考察了数学知识在解决实际问题中的应用。如文科的第2题解决的是作物产量的对比分析评估,文科和理科的第19题,考察的都是在实际生活生产流水线上,对于产品的质量监督与抽样分析调查的问题,从而体现数学与实际生活的密不可分的联系。

立足基础,常规考察

命题中涵盖了接近80%的基础题型,题目设置难度不大,但要求学生对课本知识的全面掌握。文、理23考察的是极坐标、参数方程、普通直角坐标方程的转化,以及曲线参数方程中在求解距离最值时候进行的三角换元,解题思路明确,计算量一般,所以整体难度也不大。题型基础,出题直击考点,简明扼要。让考生倍感亲切,从试题形式、分析思路到解题方法,均是学生日常训练中,经常训练的常规题型。对基础扎实的学生,审题轻松。

适度创新,选拔能力

命题追求稳中求新,适度考察将已有的知识与方法迁移到新情境中解决问题的能力。如理12以数列为载体综合考察推理论证能力、运算求解能力和创新意识;文4,理科2都以“太极八卦图”作为命题载体,考察的是概率的计算,同时注重对中国传统文化的宣传与理解;文6,16,理7,16以三视图和球为载体综合考察了学生的空间思维的能力。

2017年高考二轮复习数学学科需要注意哪些

作为一个8年前参加高考的老人来说,这个题目的话,设三角形ABC边长为X,体积为Y,然后取X范围为0~5根号3。然后你等边三角形ABC的话,你面积可以算出来,差不多是根号3/4的X?。然后高度的话,OF=5cm,然后减去O到AB的垂线距离,多少我懒得算了,反正不难。接下来三棱锥的体积公式算出来,然后根据x的范围,求出最大值。我记得好像要靠导数的,忘了,嘿嘿。

一.明确“主体”,突出重点

第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.以下列举各章节的重点,供参考.

1.函数与不等式(主体).代数以函数为主干,不等式与函数的结合是“热点”.

(1)关于函数性质.单调性、奇偶性、周期性(常以三角函数为载体)、对称性及反函数等处处可考.常以具体函数,结合图象的几何直观展开,有时作适当抽象.

(2)关于一元二次函数,是重中之重.有关性质及应用的训练要深入、广泛.函数值域(最值),以二次函数或转化为二次函数的值域,特别是含参变量的二次函数值域研究为重点;方法以突出配方、换元和基本不等式法为重点.一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与一元二次函数息息相关,在训练中应占较大比重.

(3)关于不等式证明.与函数联系的不等式证明,与数列联系结合是重点.方法要突出比较法和利用基本不等式的公式法.对于放缩法虽不是高考重点,但历年考题中都或多或少用到放缩法,故掌握几种简单地放缩技巧是必要的.

(4)关于解不等式.以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,突出灵活转化,突出分类讨论.

2.数列(主体).以等差、等比两种基本数列为载体考查数列的通项、求和、极限等为重点.关于抽象数列(用递推关系给出的),讲练界限要分明,只限定可化为等差、等比之类.

3.三角训练中要抓基本公式的熟练运用,突出正用、逆用和变式用.近几年呈降温趋势.训练题型、方法、难度等达到教材水准即可.

4.立体几何(主体).突出“空间”、“立体”.即把线段、线面、面面的位置关系考查置于某几何体的情景中.几何体以棱柱、棱锥为重点.棱柱中又以三棱柱、正方体为重点;棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体也要重视.位置关系以判断或证明垂直为重点,突出三垂线定理及逆定理的灵活运用.空间角以二面角为重点,强化三垂线定理定角法.空间距以点面距、线面距为重点,二者结合尤为重要.等积转化、等距转化是最常用方法.面积、体积计算,解答题涉及棱锥(特别是三棱锥)居多.因为三棱锥体积求法灵活,思路宽广.

文章标签: # 函数 # 考察 # 重点