您现在的位置是: 首页 > 教育改革 教育改革
导数的应用高考题-导数高考小题
tamoadmin 2024-10-31 人已围观
简介1.高中数学必杀题,圆锥曲线与导数2.高中数学导数 高考难度,学霸们来看一下3.泰勒公式高考应用高中数学必杀题,圆锥曲线与导数01 下午匆匆来到自习室,开始了我的生活日常,埋头伏案,学习新知。考虑到看文字会犯困,于是我拿起了近几年的数学高考卷,计划完成两道难啃的大题——圆锥曲线和导数。总共做了四个题,连做带分析共花费了将近两小时的时间,终于搞定。我仔细想,这是低效学习吗?不,我还要花半小时的时间
1.高中数学必杀题,圆锥曲线与导数
2.高中数学导数 高考难度,学霸们来看一下
3.泰勒公式高考应用
高中数学必杀题,圆锥曲线与导数
01
下午匆匆来到自习室,开始了我的生活日常,埋头伏案,学习新知。考虑到看文字会犯困,于是我拿起了近几年的数学高考卷,计划完成两道难啃的大题——圆锥曲线和导数。总共做了四个题,连做带分析共花费了将近两小时的时间,终于搞定。我仔细想,这是低效学习吗?不,我还要花半小时的时间再次分析,这几个题的套路。
一、圆锥曲线
16,17年的这两个题,难度不大,但有共同特征。在这里重点分析第二问,毕竟第一问是送分题嘛。都考虑了直线斜率是否存在的情况。17年考察定点问题,16年考察取值范围。
关于定点问题。之前有看过一个题是利用特殊情况求出定点,再验证定点是否正。于是,针对这道题我优先采用这种方法,但结果错误,因为过程中我只求出了了横坐标,便断定这个点是轴上的点,错误。也就是,用错方法了。那么,我只好选择保守的方法,也就是万能方法做,吭哧吭哧算完了,发现粗心拖了我的后腿,结果这道题用了很长时间才算出结果。
关于取值范围。因为题中给出的条件明确,所以按部就班就可以把弦长算出来,但如果涉及到圆的弦长,尽量用几何法来做,勾股定理计算。其他题型还没见过,在摸索中……
二、导数
16,17年的这两个题,都涉及到了零点问题。第一问依然是对参数进行分情况讨论,进而求函数的单调性或者参数的取值范围,属于相对简单的题型。虽然每每做完,我总会怀疑自己的答案是否准确。注意判断等号是否成立。
第二问,这两个题都涉及到了技巧。相比之下,17年的简单一些,考察根据零点,求参数的取值范围。可以用排除法得到答案,但需要进一步验证,这是比较麻烦的事情,而且答案中突然给出的新值,我一看就蒙圈了。16年的技巧性更强一些,已知零点,证明不等式。技巧是将不等式转化成函数值域之间的不等式,求解在某个单调区间内的最值。当然,别以为这样就结束了,还有,构造出新函数,判断单调性,求极值,完成。
如此曲折的第二问,所以考试拿不到满分,一定有这个题的原因。不是每个人都能想到这一步的。出题人为何为难考生?只因我的道不够深,所以像这种题型的题,多做,多找感觉。争取拿10分。
02
话说本人高考的130分是高中生涯中的最高分了,感谢那年不是很变态的题,感谢我不讨厌数学,也感谢我如今还在学数学。
泡了很久的专业,却做得没那么专业,只知皮毛不可取,深入研究是核心。愿我在数学这条路越走越远,越走越快……正如一句话所说:既然学不,就往里学(好变态的一句话!)。学,才是硬道理;做,才是真理。
后记:半小时码的,将就看吧。清明节到了,祝大家有一个美好的假期。我的假期就奉献给数学吧!
如果再来一次高考,你愿意吗?
高中数学导数 高考难度,学霸们来看一下
设P(x,x^3-3x)为函数上的点,所以过P点的切线斜率为k=3x^2-3,所以(x^3-3x-m)/(x-2)=3x^2-3,满足这个等式的x值有3个,解得m=-2x^3+6x^2-6,设g(x)==-2x^3+6x^2-6,它与x=m有3个交点,所以m属于(-6,2)
泰勒公式高考应用
关于泰勒公式高考应用内容如下:
泰勒公式是数学分析中重要的一个定理,它提供了一种近似计算函数的方法,当自变量在某个点附近变化时,可以用泰勒公式近似地表示函数。在高考数学中,泰勒公式也被广泛应用,下面介绍一些泰勒公式在高考数学中的应用。
1.近似计算:在某些高考题中,可能会出现需要近似计算一些复杂的函数值的情况。此时,可以使用泰勒公式来近似计算函数值。例如,在计算一个函数的导数时,可以使用泰勒公式来近似计算函数的导数值,从而得出答案。
2.求解极限:在求解某些极限问题时,泰勒公式可以提供一种有效的方法。例如,当自变量x→0时,可以使用泰勒公式将一些三角函数、指数函数等函数展开成无穷级数,从而将极限问题转化为求级数的收敛问题。
3.求导函数的零点:在某些情况下,需要求出导函数的零点。此时,可以使用泰勒公式来近似地表示导函数,从而找到导函数的零点。例如,在求解函数的极值点时,可以使用泰勒公式来近似地表示函数的导函数,然后求出导函数的零点,从而得到函数的极值点。
4.近似计算定积分:在某些情况下,需要近似计算一个函数的定积分。此时,可以使用泰勒公式将函数展开成无穷级数,然后将积分区间分割成若干个小区间,在每个小区间上使用级数展开式进行积分,最后将所有小区间的积分结果累加起来,即可得到近似计算结果。
5.求解微分方程:在某些情况下,需要求解一个微分方程的解。此时,可以使用泰勒公式来近似地表示解函数。例如,在求解一个二阶常微分方程时,可以使用泰勒公式将解函数展开成无穷级数,然后代入微分方程进行求解。
总之,泰勒公式在高考数学中有着广泛的应用。它可以帮助我们近似计算函数值、求解极限、求导函数的零点、近似计算定积分、求解微分方程等问题。在实际应用中,需要根据具体问题选择合适的展开方式和使用方法,以达到最优的效果。