您现在的位置是: 首页 > 教育改革 教育改革
高考平面向量的考点,高考中有关平面向量计算的问题
tamoadmin 2024-05-20 人已围观
简介1.平面向量基本定理的应用(高考急求)8.基本初等函数n (三角函数)任意角的概念、弧度制①了解任意角的概念。②了解弧度制的概念,能进行弧度与角度的互化。三角函数①理解任意角三角函数(正弦、余弦、正切)的定义。②能利用单位圆中的三角函数线推导出α,πα的正弦、余弦、正切的诱导公式,能画出y = sin x,y= cos x,y = tan x的图像,了解三角函数的周期性。③理解正弦
1.平面向量基本定理的应用(高考急求)
8.基本初等函数n (三角函数)
任意角的概念、弧度制
①了解任意角的概念。
②了解弧度制的概念,能进行弧度与角度的互化。
三角函数
①理解任意角三角函数(正弦、余弦、正切)的定义。
②能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式,能画出y = sin x,y= cos x,y = tan x的图像,了解三角函数的周期性。
③理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间内的单调性。
④理解同角三角函数的基本关系式:
9.平面向量
(1)平面向量的实际背景及基本概念
①了解向量的实际背景。
②理解平面向量的概念,理解两个向量相等的含义。
③理解向量的几何表示。
向量的线性运算
①掌握向量加法、减法的运算,并理解其几何意义。
②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
③了解向量线性运算的性质及其几何意义。
平面向量的基本定理及坐标表示
①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示。
③会用坐标表示平面向量的加法、减法与数乘运算。
④理解用坐标表示的平面向量共线的条件。
平面向量的数量积
①理解平面向量数量积的含义及其物理意义。
②了解平面向量的数量积与向量投影的关系。
③掌握数量积的坐标表达式,会进行平面向量数量积的运算。
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
向量的应用
①会用向量方法解决某些简单的平面几何问题。
②会用向量方法解决简单的力学问题与其他一些实际问题。
10.三角恒等变换
和与差的三角函数公式
①会用向量的数量积推导出两角差的余弦公式。
②能利用两角差的余弦公式导出两角差的正弦、正切公式。
③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。
简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)。
11.解三角形
正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
平面向量基本定理的应用(高考急求)
1、向量的加法:
AB+BC=AC
设a=(x,y) b=(x',y')
则a+b=(x+x',y+y')
向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:
交换律:
a+b=b+a
结合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的减法
AB-AC=CB
a-b=(x-x',y-y')
若a//b
则a=eb
则xy`-x`y=0·
若a垂直b
则a·b=0
则xx`+yy`=0
3、向量的乘法
设a=(x,y) b=(x',y')
用坐标计算向量的内积:a·b(点积)=x·x'+y·y'
a·b=|a|·|b|*cosθ
a·b=b·a
(a+b)·c=a·c+b·c
a·a=|a|的平方
向量的夹角记为<a,b>∈[0,π]
Ax+By+C=0的方向向量a=(-B,A)
(a·b)·c≠a·(b·c)
a·b=a·c不可推出b=c
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y)
x=(x1+λx2)/(1+λ)
则有
y=(y1+λy2)/(1+λ)
我们把上面的式子叫做有向线段P1P2的定比分点公式
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a同方向;当λ<0时,与a反方向。
实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。
如图,OA,OB,OC共起点O.?OB=b,OC=c,OA=a.?a=fb+nc
则:A∈直线BC←→f+n=1,并且:
①A∈线段BC内时:f>0,n>0
②A∈BC延长线上时:f<0,n>0
③A∈CB延长线上时:f>0,n<0.