您现在的位置是: 首页 > 教育研究 教育研究

数学高考浙江答案解析_浙江高考数学卷答案解析

tamoadmin 2024-05-25 人已围观

简介1.2018年浙江高考数学试卷试题及答案解析(答案WORD版)2.2011年浙江省理科数学高考题3.2015年高考浙江数学卷第七题什么意思4.关于今年浙江高考数学选择题第八题双曲线的问题!求详解!5.想知道2011年数学高考试题和答案(浙江卷)4X^2+y^2+xy=1(2x)^2+y^2大于等于4xy所以5xy小于等于1xy小于等于1/5(2x+y)^2=4X^2+y^2+xy+3xy=1+3x

1.2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2.2011年浙江省理科数学高考题

3.2015年高考浙江数学卷第七题什么意思

4.关于今年浙江高考数学选择题第八题双曲线的问题!求详解!

5.想知道2011年数学高考试题和答案(浙江卷)

数学高考浙江答案解析_浙江高考数学卷答案解析

4X^2+y^2+xy=1

(2x)^2+y^2大于等于4xy

所以5xy小于等于1

xy小于等于1/5

(2x+y)^2=4X^2+y^2+xy+3xy=1+3xy

所以1+3xy小于等于1+3/5=8/5

即(2x+y)^2小于等于8/5

所以2x+y大于等于(-2根号10)/5小于等于(2根号10)/5

所以2x+y最大值是(2根号10)/5

楼上答案是文科的哟

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

首先以单位长度1也就是向量b的模为半径画圆。从圆心引出一条射线。在这条射线上找到一点引出的射线与从圆心引出的这条夹角是60度,与园相切。从圆心到这个点的距离是最大值。a的范围就是0到这个值。可以求出a

max=2倍根号3

/3。

下面解释原因。首先向量b-a就是从a的端点指向b的端点的向量,他与a的夹角是120度,所以a的要取60度角(也就是这两条向量是夹120度角)。

所以所有的和从原点引出的直线呈60度夹角的射线中能和圆有交点的都可以取到。不包括圆心(题目中说的a不等于0)。

所以最外面的可以到与园相切的这条,之后的都不行了。所以算出a的范围是(0,2倍根号3

/3]

2011年浙江省理科数学高考题

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2015年浙江省高考数学命题思路

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理差异,逐步调整

试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一中特级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

1.考查双基、注重覆盖

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。

2015年高考浙江数学卷第七题什么意思

设实数x、y是不等式组{x+2y-5>0,2x+y-7>0,x≥0 y≥0},若x、y为整数,则3x+4y的最小值为

A.14; B. 16; C. 17; D. 19

解:作直线L?:x+2y-5=0,设其与x轴的交点为A(5,0);再作直线L?:2x+y-7=0,设其与L?的

交点(3,1)为B,与y轴的交点(0,7)为C;那么由不等式组{x+2y-5>0,2x+y-7>0,x≥0 y≥0}所规定的区域就是x轴的上方(含x轴),y轴的右方(含y轴),折线ABC的右上方的所围的半开放区域。

由于不等式x+2y-5>0,2x+y-7>0都不带等于号,故折线ABC上的点都不能算在上面指定的区域

内。又x,y是整数,那么最接近这个区域边界的点从右到左依次排列为:(6,0);(5,1);(4,1)

(3,2);(2,4);(1,6);(0,8).共7个点,那么这些点中使3x+4y的值最小的点是点(4,1),其值=3×4+4×1=16,故应选B。

关于今年浙江高考数学选择题第八题双曲线的问题!求详解!

7.(5分)存在函数f(x)满足,对任意x∈R都有( )

A. f(sin2x)=sinx B. f(sin2x)=x2+x C. f(x2+1)=|x+1| D. f(x2+2x)=|x+1|

+2x)=|x+1|

试题的意思是,你能不能找到一个函数,满足上面的四个条件之一。

答案是D.

考点: 函数解析式的求解及常用方法.

专题: 函数的性质及应用.

分析: 利用x取特殊值,通过函数的定义判断正误即可.

解答:

解:

A.取x=0,则sin2x=0,∴f(0)=0;

取x=π/2,则sin2x=0,∴f(0)=1;

∴f(0)=0,和1,不符合函数的定义;

∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;

B.取x=0,则f(0)=0;

取x=π,则f(0)=π2+π; ∴f(0)有两个值,不符合函数的定义; ∴该选项错误;

C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0; 这样f(2)有两个值,不符合函数的定义; ∴该选项错误;

D.令|x+1|=t,t≥0,则f(t2﹣1)=t;

令t2﹣1=x,则t=√x+1;

∴f(x)=; =√x+1

即存在函数f(x)==√x+1,对任意x∈R,都有f(x2+2x)=|x+1|; ∴该选项正确.

故选:D.

点评: 本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.

想知道2011年数学高考试题和答案(浙江卷)

解析:F1,F2分别是双曲线C:x^2/a^2-y^2/b^2=1(a>b>0)的左、右焦点

∴F1(-c,0),F2(c,0)

∵B(0,b)

∴F1B方程:y=b/c(x+C)=b/cx+b

与y=-b/ax联立解得x=-ac/(a+c),y= bc/(a+c),则P(-ac/(a+c),bc/(a+c))

与y=b/ax联立解得x=ac/(c-a),y= bc/(c-a),则Q(ac/(c-a),bc/(c-a))

∴PQ中点坐标(a^2c/(c^2-a^2),bc^2/(c^2-a^2))

∴PQ中垂线方程:y-bc^2/(c^2-a^2)=-c/b(x-a^2c/(c^2-a^2))

令y=0

x=(a^2c+cb^2)/(c^2-a^2)=c^3/(c^2-a^2)

∴M(c^3/(c^2-a^2),0)

∵|MF2|=|F1F2|

∴c^3/(c^2-a^2)-c=2c==> c^2/(c^2-a^2)=3==>e=√6/2

选择B

2011年普通高等学校招生全国统一考试(浙江卷)

理科数学

一、选择题

(1)设函数

,则实数

=

(A)-4或-2

(B)-4或2

(C)-2或4

(D)-2或2

(2)把复数

的共轭复数记作

,i为虚数单位,若

(A)3-i

(B)3+i

(C)1+3i

(D)3

(3)若某集合体的三视图如图所示,则这个集合体的直观图可以是

(4)下列命题中错误的是

(A)如果平面

,那么平面

内一定存在直线平行于平面

(B)如果平面

不垂直于平面

,那么平面

内一定不存在直线垂直于平面

(C)如果平面

,平面

,那么

(D)如果平面

,那么平面

内所有直线都垂直于平面

(5)设实数

满足不等式组

为整数,则

的最小值是

(A)14

(B)16

(C)17

(D)19

(6)若

,则

(A)

(B)

(C)

(D)

(7)若

为实数,则“

”是

(A)充分而不必要条件

(B)必要而不充分条件

(C)充分必要条件

(D)既不充分也不必要条件

(8)已知椭圆

与双曲线

有公共的焦点,

的一条渐近线与以

的长轴为直径的圆相交于

两点,

恰好将线段

三等分,则

(A)

(B)

(C)

(D)

(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率

(A)

(B)

(C)

D

(10)设a,b,c为实数,f(x)

=(x+a)

.记集合S=

分别为集合元素S,T的元素个数,则下列结论不可能的是

(A)

=1且

=0

(B)

(C)

=2且

=2

(D)

=2且

=3

非选择题部分

(共100分)

二、填空题:本大题共7小题,每小题4分,共28分

(11)若函数

为偶函数,则实数

=

(12)若某程序图如图所

示,则该程序运行后输出的k的值是

(13)设二项式(x-

)n(a>0)的展开式中X的系数为A,常数项为B,

若B=4A,则a的值是

(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为

,则α与β的夹角

的取值范围是

(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公

司投递了个人简历,假定该毕业生得到甲公司面试的概率为

,得到乙公司面试的概率为

,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若

,则随机变量X的数学期望

(16)设

为实数,若

的最大值是

.。

(17)设

分别为椭圆

的焦点,点

在椭圆上,若

;则点

的坐标是

.

三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

(18)(本题满分14分)在

中,角

所对的边分别为a,b,c.

已知

.

(Ⅰ)当

时,求

的值;

(Ⅱ)若角

为锐角,求p的取值范围;

(19)(本题满分14分)已知公差不为0的等差数列

的首项

为a(

),设数列的前n项和为

,且

成等比数列

(1)求数列

的通项公式及

(2)记

,当

时,试比较

的大小.

(20)(本题满分15分)如图,在三棱锥

中,

,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2

(Ⅰ)证明:AP⊥BC;

(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面

角?若存在,求出AM的长;若不存在,请说明理由。

(21)(本题满分15分)已知抛物线

:

,圆

:

的圆心为点M

(Ⅰ)求点M到抛物线

的准

线的距离;

(Ⅱ)已知点P是抛物线

上一点(异于原点),过点P作圆

的两条切线,交抛物线

于A,B两点,若过M,P两点的直线

垂直于

AB,求直线

的方程

(22)(本题满分14分)

设函数

(I)若

的极值点,求实数

(II)求实数

的取值范围,使得对任意的

,恒有

成立,注:

为自然对数的底数。

文章标签: # 数学 # 10px # 0px