您现在的位置是: 首页 > 教育研究 教育研究
数学导数高考题_导数的题高考题
tamoadmin 2024-06-09 人已围观
简介1.导数高考题求解2.问一个高考导数题3.高考如何考导数大题4.高中导数的题型及解题技巧5.一道高中导数的数学题!明天高考了,在线急等!总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们抽出时间写写总结吧。那么你知道总结如何写吗?下面是我帮大家整理的高中导数题型总结,仅供参考,希望能够帮助到大家。 首先,关于
1.导数高考题求解
2.问一个高考导数题
3.高考如何考导数大题
4.高中导数的题型及解题技巧
5.一道高中导数的数学题!明天高考了,在线急等!
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们抽出时间写写总结吧。那么你知道总结如何写吗?下面是我帮大家整理的高中导数题型总结,仅供参考,希望能够帮助到大家。
首先,关于二次函数的不等式恒成立的主要解法。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:
第一步:令得到两个根;
第二步:画两图或列表;
第三步:由图表可知;
其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)
第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,
(1)若在区间上为“凸函数”,求m的取值范围;
(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.
解:由函数得
(1)在区间上为“凸函数”,
则在区间[0,3]上恒成立
解法一:从二次函数的区间最值入手:等价于
解法二:分离变量法:
∵当时,恒成立,
当时,恒成立
等价于的最大值()恒成立,
而()是增函数,则
(2)∵当时在区间上都为“凸函数”
则等价于当时恒成立
变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)
请同学们参看2010第三次周考:
例2:设函数
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式恒成立,求a的取值范围.
(二次函数区间最值的例子)
解:(Ⅰ)
令得的单调递增区间为(a,3a)
令得的单调递减区间为(-,a)和(3a,+)
∴当x=a时,极小值=当x=3a时,极大值=b.
(Ⅱ)由||≤a,得:对任意的恒成立①
则等价于这个二次函数的对称轴(放缩法)
即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数.(9分)
∴
于是,对任意,不等式①恒成立,等价于
又∴
点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系
第三种:构造函数求最值
题型特征:恒成立恒成立;从而转化为第一、二种题型
例3;已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;
(Ⅱ)当时,求的值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得
(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减
又
∴的值域是
(Ⅲ)令
思路1:要使恒成立,只需,即分离变量
思路2:二次函数区间最值
二、题型一:已知函数在某个区间上的单调性求参数的范围
解法1:转化为在给定区间上恒成立,回归基础题型
解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集
例4:已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
解:.
(Ⅰ)∵是偶函数,∴.此时,,
令,解得:.
列表如下:
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
+
0
-
0
+
递增
极大值
递减
极小值
递增
可知:的极大值为,的极小值为.
(Ⅱ)∵函数是上的单调函数,
∴,在给定区间R上恒成立判别式法
则解得:.
综上,的取值范围是.
例5、已知函数
(I)求的单调区间;
(II)若在[0,1]上单调递增,求a的取值范围。子集思想
(I)
1、
当且仅当时取“=”号,单调递增。
2、
单调增区间:
单调增区间:
(II)当则是上述增区间的`子集:
1、时,单调递增符合题意
2、,
综上,a的取值范围是[0,1]。
三、题型二:根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;
第三步:解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
求实数的取值范围;
若函数与的图象有三个不同的交点,求实数的取值范围.
解:(1)由题意∵在区间上为增函数,
∴在区间上恒成立(分离变量法)
即恒成立,又,∴,故∴的取值范围为
(2)设,
令得或由(1)知,
①当时,,在R上递增,显然不合题意…
②当时,,随的变化情况如下表:
—
↗
极大值
↘
极小值
↗
由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得
综上,所求的取值范围为
根的个数知道,部分根可求或已知。
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。
解:(1)∵的图像过原点,则,
又∵是的极值点,则
(2)设函数的图像与函数的图像恒存在含的三个不同交点,
等价于有含的三个根,即:
整理得:
即:恒有含的三个不等实根
(计算难点来了:)有含的根,
则必可分解为,故用添项配凑法因式分解,
十字相乘法分解:
恒有含的三个不等实根
等价于有两个不等于-1的不等实根。
题2:切线的条数问题====以切点为未知数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.
(1)由题意得:
∴在上;在上;在上
因此在处取得极小值
∴①,②,③
由①②③联立得:,∴
(2)设切点Q,
过
令,
求得:,方程有三个根。
需:
故:;因此所求实数的范围为:
题3:已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:根分布或判别式法
例8、
解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,
=x2-7x+10,令,解得或.
令,解得
可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.
(Ⅱ)=x2-(m+3)x+m+6,
要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)
根分布问题:
则,解得m>3
例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
解:(1)
当时,令解得,令解得,
所以的递增区间为,递减区间为.
当时,同理可得的递增区间为,递减区间为.
(2)有且仅有3个极值点
=0有3个根,则或,
方程有两个非零实根,所以
或
而当或时可证函数有且仅有3个极值点
其它例题:
1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数的取值范围.
解:(Ⅰ)
令=0,得
因为,所以可得下表:
0
+
0
-
↗
极大
↘
因此必为最大值,∴因此,,
即,∴,∴
(Ⅱ)∵,∴等价于,
令,则问题就是在上恒成立时,求实数的取值范围,
为此只需,即,
解得,所以所求实数的取值范围是[0,1].
2、(根分布与线性规划例子)
(1)已知函数
(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;
(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.
解:(Ⅰ).由,函数在时有极值,
∴
∵∴
又∵在处的切线与直线平行,
∴故
∴…………………….7分
(Ⅱ)解法一:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,
∴所求一条直线L的方程为:
另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,
由得点F的横坐标为:
由得点G的横坐标为:
∴即
解得:或(舍去)故这时直线方程为:
综上,所求直线方程为:或.…………….………….12分
(Ⅱ)解法二:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,∴所求一条直线L的方程为:
另一种情况由于直线BO方程为:,设直线BO与AC交于H,
由得直线L与AC交点为:
∵,,
∴所求直线方程为:或
3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;
(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
解:由题知:
(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0
得
(Ⅱ)依题意=–3且f(2)=5
解得a=1,b=–6
所以f(x)=x3–6x2+9x+3
(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)
=3ax2+2bx–3a–2b由=0b=–9a①
若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a
由①②得–25a+3<8a<7a+3
所以当
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
解:(1)
………………………………………………………………………2分
令得
令得
∴的单调递增区间为,,单调递减区间为…………5分
(2)由题得
即
令……………………6分
令得或……………………………………………7分
当即时
-
此时,,,有一个交点;…………………………9分
当即时,
∴当即时,有一个交点;
当即时,有两个交点;
当时,,有一个交点.………………………13分
综上可知,当或时,有一个交点;
当时,有两个交点.…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ)若函数在处有极值,求的解析式;
(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
导数高考题求解
解:
1.
f'(x)=1-1/(1+x)------注意:这是导数;
所以:x>0时,原函数恒增;
又因为f(0)=0;
所以f(x)>0 在x>0时恒成立;
另:
1>a1>0;
所以:a2=f(a1)>0;
a3=f(a2)>0;
…… 易得:an=f(an-1)>0 n>=2 且n是整数 ;
(这里如果你觉得不稳妥的话可以用数学归纳法证明);
另:
由题易得:an-a(n+1)=an-[an-ln(1+an)]=ln(1+an);
所以,只需要解出ln(1+an)>0即可得出:an>a(n+1);
又因为:an>0 (已解出);
所以:ln(1+an)>0;
即:an-a(n+1) >0;
即:a(n+1)<an<a1<1;
所以:0<a(n+1)<an<1。
2.
原式等价于:an-ln(1+an)<an^2/2;
设:F(an)=(an^2)/2 -an+ln(1+an);
(注意:在这里需要把an当做是一个连续的大于零的自变量而非间隔的单值)
则 F'(an)=an-1+1/(1+an)=(1+an)-2+1/(1+an)----恒等变换;这是导数;
(这一步的目的是变换成对号函数,这样好求解)
另设:t=1+an;
则:F'(x)=t-2+1/t>=0;
所以:F(x)恒增
(注:这里要是觉得不稳妥的话可以去证明一下导数不恒等于0,其实这里很明显导数是0时仅仅是个驻点而已);
又因为F(0)=0;
an>0(已证明);
所以F(an)>0;
即:F(an)=(an^2)/2 -an+ln(1+an)>0;
即:an-ln(1+an)<an^2/2;
所以原式成立。
3.咕... 这一问没看明白你打的题目~...~|||
若是:b(n+1)=1/[2(n+1)bn]
先容我想想...
(我的惯用思路是把an的通项公式解出来,再把不等式移项到同侧,化函数解...不过,这里有个排列数...这样解不容易。另外一个思路就是想办法放缩,找到合适的中间量就ok了。亦或是用三段论,这样有时非常之简单。我一般用的就是这仨思路,这一问容我想想,我还没见过带排列数的不等式求解来着。)
我们老班经常会用一个函数跟三段论相结合的方法
就是先比较初值再利用比例把后面的相邻项之间的比算出来;
然后就利用单调性解决掉喽。
我先试试吧,昨天死活没算出来。
先用我们老班那方法吧,应该方便:
n=2时,易得:b2>a2*2;
(这里直接比较就可以,移到同侧和零比就行)
由题易得:b(n+1)/bn =(n+1)/2
----------a(n+1)*(n+1)!/an*n! =(n+1)*[an-ln(1+an)]/an ;
另:
设:g(x)= -ln(1+an)+ an/2;
则:g'(x)= -1/(1+an)+ 1/2;
0<an<1;
易得:g'(x)<0,g(x)恒减;
又因为:g(0)=0;
所以:g(an)<0;
所以:[an-ln(1+an)]/an <1/2;
所以:a(n+1)/an =(n+1)*[an-ln(1+an)]/an<(n+1)/2;
所以:a(n+1)*(n+1)!/an*n!<b(n+1)/bn;
又因为:n>=2且b2>a2*2;
所以:an*n!<bn。
答:1.0<a(n+1)<an<1;2.an+1<an^2/2;3.an*n!<bn。
题解过程见上。
啊~~~~~~~~~~~~~竟然这样就行...~|||
真疯了...~昨天我在网吧对着电脑一个小时就硬生生的没能做出来~~~泪奔啊~~~
怪不得老班成天说我...~|||
呵呵,好了,大功告成:)
问一个高考导数题
要求出他的极限 可令2x-3f(x)=(x-3)(x-a)=x^2-ax-3x+3a
比较两边 可得出f(x)=-1/3x^2+a/3*x+5/3*x-a
将x=3带入完全符合已知
求导 f`(x)=-2/3*x+a/3+5/3
f`(3)=-2 解得a=-5
所以最后式化简后为(x+5)
在x趋近3时,为8
高考如何考导数大题
f(x)=x^3-6x^2+3X+1
f'(x)=3x^2-12x+3=3(x^2-4x+1)
若令x^2-4x+1=0,则其两根分x=2±3^(1/2)
根据因式分解:x^2+(p+q)x+pq=0, 可分解为(x+p)(x+q)=0,方程的两根分别为x1=-p;x2=-q.
(x-x1)(x-x2)=0
由此,f'(x)=3x^2-12x+3=3(x^2-4x+1)=3[x-(2+3^1/2)][x-(2-3^1/2)] PS:3^1/2为根号下3
高中导数的题型及解题技巧
高考数学导数大题出题特点及解法技巧:
1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。
2.若题目考察的是曲线的切线,分为两种情况:
(1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.
(2)关于两曲线的公切线,若一直线同时与两曲线相切,则称该直线为两曲线的公切线.
高考导数有什么题型
①应用导数求函数的单调区间,或判定函数的单调性;
②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。
导数的解题技巧和思路
①确定函数f(x)的定义域(最容易忽略的,请牢记);
②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间;
③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 高考数学导数主流题型及其方法 (1)求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:
先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
一道高中导数的数学题!明天高考了,在线急等!
高中导数的题型及解题技巧如下:
一、利用导数研究切线问题
1、解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:切点在切线上;切点在曲线上;斜率等于导数。用这三句话,百分之百可以解答全部切线问题。
2、另外,二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。
二、利用导数研究函数的单调性
解题思路:求定义域——求导——讨论参数,判断单调性。首先,务必要先求定义域,以免单调区间落在定义域之外;其次,求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后,带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。
三、利用导数研究函数的极值和最值
解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值,必须先判断单调性。而求最值,则需要依据单调性、极值和端点值来判断。
四、利用导数研究不等式
1、解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等式。从这个解题思路可以看得出,导数不等式的本质是最值问题。因此,导数不等式,就是必须先求最值。
2、利用导数不等式,绝对是超级难点,也是高考导数大题的第2小问常考的考点。大家要紧紧抓住“导数不等式就是最值问题”这句话,循序渐进地思考解题,多训练,必能完成此类题的攻克和解题。
五、利用导数研究方程
解题思路:第一步,提取参数到一边,设另一边为函数h(x);第二步,对函数h(x)求导,判断单调性,求极值,并作图;第三步,观察比较直线与曲线h(x)的交点个数。
构造函数F(x)=f(x)/x
F'(x)=[xf'(x)-f(x)]/x^2<=0
∴F(x)不增。
∴F(a)>=F(b)
即:f(a)/a>=f(b)/b
交叉相乘即得:af(b)<=bf(a)
明天做数学要沉稳些,遇到不会的不要慌你就赢了,祝福你:
高考成功!