您现在的位置是: 首页 > 教育研究 教育研究
高考物理证明斜抛运动到斜面速度方向平行_高考物理证明
tamoadmin 2024-06-15 人已围观
简介1.我想要些学习资料,高中的!!2.高考物理大题只写公式可以吗?3.高中物理向心力的知识点分析4.高考物理选择题秒杀技巧首先要清楚α:就是氦原子核,质量4,电量+2 β:就是电子,质量是一个质子质量的1/1836,电量-1在讨论α衰变和β衰变在匀强磁场的径迹时,假定原来核是静止的,由动量守恒可以知道,反冲核和α粒子(β粒子)的动量是等值反向的,由左手定则可以知道,因α粒子与反冲核都带正电,所以在α
1.我想要些学习资料,高中的!!
2.高考物理大题只写公式可以吗?
3.高中物理向心力的知识点分析
4.高考物理选择题秒杀技巧
首先要清楚α:就是氦原子核,质量4,电量+2
β:就是电子,质量是一个质子质量的1/1836,电量-1
在讨论α衰变和β衰变在匀强磁场的径迹时,假定原来核是静止的,由动量守恒可以知道,反冲核和α粒子(β粒子)的动量是等值反向的,由左手定则可以知道,因α粒子与反冲核都带正电,所以在α衰变中,无论磁场方向是垂直纸面向里还是向外,α粒子与反冲核在匀强磁场中的径迹为两个外切圆,而β粒子带负电,所以在β衰变中,β粒子与反冲核在匀强磁场中的径迹为两个内切圆。
要回归课本 弄懂最基本的
我想要些学习资料,高中的!!
我是今年刚高考完的学生,数学全国卷136,物理较差,满分120,我得了81分。现给你总结如下:
数学最后一道题一定是数列与某个知识点的结合题:这个知识点可能是以下一点或者几点:三角函数,复合函数(对数,指数,二次混合),极限(极有可能是数列的),圆锥曲线。
这类题碰见证明不管会不会,先写“当n=1的时候,经检验命题成立”,不需要证明,也不会有人哦,呵呵,这就是1分;接着写“假设n=k(k>=1时),命题成立,即:...(这时候就把k带入就行了)”。这也是1分。接着你正推三步,倒写三步,最后一行写“由上可知:当n=k+1时命题成立”,一般老师看你写这么多,就一定会看,越看越觉得有理,我相信这一问你能拿一半以上的分。我经常在数学最后一道题在完全不会的时候也能拿7分,呵呵,推荐你用哦。
数学倒数第二题,98%是圆锥曲线题:第一问通常是求圆锥曲线方程,第二问分三种情况:1,求参数的范围,2,求另一个圆锥曲线,3,证明某个命题。
第一问通常90%使用定义法,其中95%以上用第二定义。第二问有两种方法:(我自己总结的哦,名字有点怪~,呵呵)1,设而不求用维达:1,将直线方程与圆锥曲线连列,写出和x1.x2,代入已知关系,可求。2,点差法:写x1,的方程(由第一问)和x2,的方程联列,两式相减,写成y1- y2/ x1-x2=k(y1+y2/ x1+x2)的形式。y1+y2/ x1+x2是唯达,y1- y2/ x1-x2是斜率。这样就写出来了。
物理最后一题已经连续4年是带电粒子在磁场中的偏转了,这种题有三步:一找半径,二找圆心,三找临界状态.由于这类题很灵活,你需要多做题,利用参考圆做较简单。以我的经验,明年考电磁感应的可能很大。这类题分为棒切割和感应产生。要分清楚谁是电源谁是电动机,将杆的电阻当成电源的内阻,利用求解即可。
倒数第二题不一定,有三种可能:1,闭合回路欧姆定律的题。这种题要会画等效电路图,把握住穿过用电器电势降低,同一导线上电势相同。另外一定要注意电容器接入电路的作用,以及带电粒子穿过时的不同。2,电磁感应的题。我上面已经说过了,现在就不重复了。3,动量,动能的结合题目。一般要用到弹簧,抓住原长,临界,现在三个装态。这种题只要有文字,基本方程,纯属送分。
我打字慢,打了好久……就当是我考后的总结,以方便后人。希望你能得到点有用的,祝你来年考好!如有错字请谅解……
高考物理大题只写公式可以吗?
高考物理知识点
Ⅰ、复习要点
一、高考物理知识点体系
现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如,高考物理知识点总结可概括为四大单元(物理实验与物理学史单元除外)。
(一)力和运动
物体的运动变化(包括带电粒子在电场、磁场中的运动)与受力作用有关。其中力的种类计有:重力(包括万有引力)、弹力、摩擦力、浮力、电场力、磁场力(分安培力和洛舍兹力)以及分子力(包括表面张力),核力等。每种力有不同的产生原因及其特征。物体的运动形式又可分为:平衡(包括静止、匀速直线运动、匀速转动)、匀变速运动(包括匀变速直线运动、平抛、斜抛)、匀速圆周运动、振动、波动等。每一种运动形式有不同的物理条件及基本规律(或特征)。力和运动的关系以五条重要规律为纽带联系起来。
(二)功和能
1.功重力功、弹力功、摩擦力功、浮力功、电场力功、磁场力功、分子力功、核力功。
2.能注意不同形式的能及能的转换与守恒。
3.功能关系做功的过程就是能从一种形式转化为另一种形式的过程。功是能的转化的量度。
(三)物质结构
(四)应用技术的基础知识现行高中物理有关应用技术的基础知识有:声现象(乐音、噪声、共鸣等多、静电技术(静电平衡、静电屏蔽、电容储电等)、交流电应用(交流电产生、特征、规律、简单交流电路、三相交流电及其连接、变压器,远距离送电等)、无线电技术初步(电磁振荡产生、调制、发送、电谐振、检波、放大、整流等)、光路控制与成像(光的反射与折射定律、基本光学元件特性及常用光学仪器)、光谱与光谱分析、放射性及同位素、核反应堆等。经过这样的归纳、整理,全部高中物理知识可浓缩在几张小卡片纸上,便于领会和应用。
Ⅱ、归纳思维方式
分析问题最基本的思维方式有两种:综合法和分析法.
综合法是从已知量着手,根据题中给定的物理状态或物理过程。“顺流而下”,直到把待求量跟已知量的关系全部找出来为止。
分析法则“逆流上朔”。从题中所要求解的未知量开始。首先找出直接回答题目所求的定律或公式。在这些关系式电。除了待求的未知量外,还会包含着某些过渡性的未知量。然后再根据这些过渡性来知量与题中已知条件之间的关系,引用新的关系式,逐步上朔,直到把所有的未知量都能用已知量表示出来为止。有些问题(如静力平衡问题等),它的物理过程并不能很明确地分成几个互相衔接的阶段或者各个过程中的未知量互相交织,互有牵连,此时常可以不分先后。只根据问题所描述的物理状态(或物理过程)的相互联系。列出用某个状态(或过程)有关的独立方程式,联立求解。原则上,任何一个题目都可以从这两种思维方式着手求解。值得注意的是,解决具体问题时,不必拘泥于刻板的程式,而是应该侧重于对问用中所描述的状态(或过程)的分析推理,着力找出解题的关键所在,并以此为突破口下手.同时应联合运用其他的思维技巧,如等效变换,对称性、反证法、假设法、类比、逻辑推理等。
Ⅲ、综合数学技巧
运用数学技巧,包含着极其丰富的内容。总体上要求能运用数学工具和语言,表述物理概念和规律;对物理问题进行推理、论证和变换;处理实验数据;导出球验证物理规律;进行准确的演算等。就解决某帧体的物理问回而言,要求能灵活地运用多种数学工具(如方程、此例、函数、图象、不等式、指数和对数、数列、极限、极值、数学归纳、三角、平面解析几何等)。综合复习中可全面概述其在物理中的典型应用,并侧重于比例、函数及其图象(包括识图、用图、作图)、以及运用数学递推方法从特解导出通解等。必须注意,运用数学仅是研究物理问题的一种有力的工具,侧重点还是应放在对问题中物理内容的分析上.对大多数能从物理本质上着手解决的问题,一般不必要求作严格的数学论证。
Ⅳ、检查知识缺陷
整理体系、抓住主线索后,还需做好检查知识缺陷的工作。应注意自觉看书,尤其不能疏忽那些应用性强、包含(或隐含)着物理内容的“知识角落”。如对某些实验的装置、原理的理解;某些自然现象的解释;物理原理在生产技术上的应用以及与高中物理有关的科技新动态和重要的物理学史实等.不少学生由于缺乏良好的学习习惯戏迷恋于复习资料中,往往会在这些方面失分。如以往考试中解释太阳光谱中暗线的形成);分光镜的结构;低压汞蒸汽光谱;三相变压器及超导现象;直线加速器;日光灯接法;电磁感应现象的发现者等。在综合复习中应予以足够的重视。
热学辅导
热学包括分子动理论、热和功、气体的性质几部分。
一、重要概念和规律
1.分子动理论
物质是由大量分子组成的;分子永不停息的做无规则运动;分子间存在相互作用的引力和斥力。说明:(1)阿伏伽德罗常量NA=6.02X1023摩-1。它是联系宏观量和微观量的桥梁,有很重要的意义;(2)布朗运动是指悬浮在液体(或气体)里的固体微粒的无规则运动,不是分子本身的运动。它是由于液体(或气体)分子无规则运动对固体微粒碰撞的不均匀所造成的。因此它间接反映了液体(或气体)分子的无序运动。
2.温度
温度是物体分子热运动的平均动能的标志。它是大量分子热运动的平均效果的反映,具有统计的意义,对个别分子而言,温度是没有意义的。任何物体,当它们的温度相同时,物体内分子的平均动能都相同。由于不同物体的分子质量不同,因而温度相同时不同物体分子的平均速度并不一定相同。
3.内能
定义物体里所有分子的动能和势能的总和。决定因素:物质数量(m).温度(T)、体积(V)。改变方式做功——通过宏观机械运动实现机械能与内能的转换;热传递——通过微观的分子运动实现物体与物体间或同一物体各部分间内能的转移。这两种方式对改变内能是等效的。定量关系△E=W+Q(热力学第一定律)。
4.能量守恒定律
能量既不会凭空产生,也不会凭空消旯它产能从一种形式转化为别的形式,或者从一个物体转移到别的物体。必须注意:不消耗任何能量,不断对外做功的机器(永动机)是不可能的。利用热机,要把从燃料的化学能转化成的内能,全部转化为机械能也是不可能的。
5.理想气体状态参量
理想气体始终遵循三个实验定律(玻意耳定律、查理定律、盖?吕萨克定律)的气体。描述一定质量理想气体在平衡态的状态参量为:温度气体分子平均动能的标志。体积气体分子所占据的空间。许多情况下等于容器的容积。压强大量气体分子无规则运动碰撞器壁所产生的。其大小等于单位时间内、器壁单位面积上所受气体分子碰撞的总冲量。内能气体分子无规则运动的动能.理想气体的内能仅与温度有关。
6.一定质量理想气体的实验定律
玻意耳定律:PV=恒量;查理定律:P/T=恒量;盖?吕萨克定律:V/T=恒量。
7.一定质量理想气体状态方程
PV/T=恒量
说明(1)一定质量理想气体的某个状态,对应于P一V(或P-T、V-T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。如从状态A变化到B,可以经过的过程许多不同的过程。为推导状态方程,可结合图象选用任意两个等值过程较为方便。(2)当气体质量发生变化或互有迁移(混合)时,可采用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。
二、重要研究方法
1、微观统计平均
热学的研究对象是由大量分子组成的.其宏观特性都是大量分子集体行为的反映。不可能同时也无必要像力学中那样根据每个物体(每个分子)的受力情况,写出运动方程。热学中的状态参量和各种现象具有统计平均的意义。因此,当大量分子处于无序运动状态或作无序排列时,所表现出来的宏观特性——如气体分子对器壁的压强、非晶体的物理属性等都显示出均匀性。当大量分子作有序排列时,必显示出不均匀性,如晶体的各自异性等。研究热学现象时,必须充分领会这种统计平均观点。
2.物理图象
气体性质部分对图象的应用既是一特点,也是一个重要的方法。利用图象常可使物理过程得到直观、形象的反映,往往使对问题的求解更为简便。对物理图象的要求,不仅是识图、用图,而且还应变图一即作图象变换。如图P-V图变换成p-T图或V-T图等。
3.能的转化和守恒
各种不同形式的能可以互相转化,在转化过程中总量保持不变。这是自然界中的一条重要规律。也是指导我们分析研究各种物理现象时的一种极为重要的思想方法。在本讲中各部分都有广泛的渗透,应牢固把握。
三、基本解题思路
热学部分的习题主要集中在热功转换和气体性质两部分,基本解题思路可概括为四句话:
1.选取研究对象.它可以是由两个或几个物体组成的系统或全部气体和某一部分气体。(状态变化时质量必须一定。)
2.确定状态参量.对功热转换问题,即找出相互作用前后的状态量,对气体即找出状态变化前后的p、V、T数值或表达式。
3、认识变化过程.除题设条件已指明外,常需通过究对象跟周围环境的相互关系中确定。
4.列出相关方程.
光学辅导
光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.
一、重要概念和规律
(一)几何光学基本概念和规律
1、基本规律
光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。光在真空中速度最大。恒为C=3×108m/s。丹麦天文学家罗默第一次利用天体间的大距离测出了光速。法国人裴索第一次在地面上用旋转齿轮法测出了光这。实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.
2.基本规律
(1)光的直线传播规律先在同一种均匀介质中沿直线传播。小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射
角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.
3.常用光学器件及其光学特性
(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
(2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用.
(3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。隔着棱镜看到物体的像向项角偏移。棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。
(4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。成像规律1/u+1/v=1/f。线放大率m=像长/物长=|v|/u。说明①成像公式的符号法则——凸透镜焦距f取正,凹透镜焦距f取负;实像像距v取正,虚像像距v取负。②线放大率与焦距和物距有关.
(5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。
4.简单光学仪器的成像原理和眼睛
(1)放大镜是凸透镜成像在。u<f时的应用。通过放大饼在物方同地看到正立虚像。
(2)照相机是凸透镜成像在u>2f时的应用.得到的是倒立缩小施实像。
(3)幻灯机是凸透镜成像在f<u<2f时的应用。得到的是倒立放大的实像.
(4)显微镜由短焦距的凸透镜作物镜,长焦距的透镜作目镜所组成。物体位于物镜焦点外很靠近焦点处,经物镜成实像于目镜焦点内很靠近焦点处。再经物镜在同侧形成一放大虚像(通常位于明视距离处)。
(5)望远镜由长焦距的凸透镜作物镜,辕焦距的〕透镜作目镜所组成。极远处至物镜的光可看成平行光,经物镜成中间像(倒立、缩小、实像)于物镜焦点外很靠近焦点处,恰位于目镜焦点内,再经目镜成虚像于极远处(或明视距离处)。
(6)眼睛等效于一变焦距照相机,正常人明视距约25厘米。明视距离小子25厘米的近视眼患者需配戴凹透镜做镜片的眼镜;明视距离大于25厘米的远视25者需配戴凸透镜做镜片的眼镜。
(二)物理光学——人类对光本性的认识发展过程
(1)微粒说(牛顿)基本观点认为光像一群弹性小球的微粒。实验基础光的直线传播、光的反射现象。困难问题无法解释两种媒质界面同时发生的反射、折射现象以及光的独立传播规律等。
(2)波动说(惠更斯)基本观点认为光是某种振动激起的波(机械波)。实验基础光的干涉和衍射现象。
①个的干涉现象——杨氏双缝干涉实验
条件两束光频率相同、相差恒定。装置(略)。现象出现中央明条,两边等距分布的明暗相间条纹。解释屏上某处到双孔(双缝)的路程差是波长的整数倍(半个波长的偶数倍)时,两波同相叠加,振动加强,产生明条;两波反相叠加,振动相消,产生暗条。应用检查平面、测量厚度、增强光学镜头透射光强度(增透膜).
②光的衍射现象——单缝衍射(或圆孔衍射)
条件缝宽(或孔径)可与波长相比拟。装置(略)。现象出现中央最亮最宽的明条,两边不等距发表的明暗条纹(或明暗乡间的圆环)。困难问题难以解释光的直进、寻找不到传播介质。
(3)电磁说(麦克斯韦)基本观点认为光是一种电磁波。实验基础赫兹实验(证明电磁波具有跟光同样的性质和波速)。各种电磁波的产生机理无线电波自由电子的运动;红外线、可见光、紫外线原子外层电子受激发;x射线原子内层电子受激发;γ射线原子核受激发。可见光的光谱发射光谱——连续光谱、明线光谱;吸收光谱(特征光谱。困难问题无法解释光电效应现象。
(4)光子说(爱因斯坦)基本观点认为光由一份一份不连续的光子组成每份光子的能量E=hν。实验基础光电效应现象。装置(略)。现象①入射光照到光电子发射几乎是瞬时的;②入射光频率必须大于光阴极金属的极限频率ν。;
③当ν>v。时,光电流强度与入射光强度成正比;④光电子的最大初动能与入射光强无关,只随着人射光灯中的增大而增大。解释①光子能量可以被电子全部吸收.不需能量积累过程;②表面电子克服金属原子核引力逸出至少需做功(逸出功)hν。;③入射光强。单位时间内入射光子多,产生光电子多;④入射光子能量只与其频率有关,入射至金属表,除用于逸出功外。其余转化为光电子初动能。困难问题无法解释光的波动性。
(5)光的波粒二象性基本观点认为光是一种具有电磁本性的物质,既有波动性。又有粒子性。大量光子的运动规律显示波动性,个别光子的行为显示粒子性。实验基础微弱光线的干涉,X射线衍射.
二、重要研究方法
1.作图锋几何光学离不开光路图。利用作图法可以直观地反映光线的传播,方便地确定像的位置、大小、倒正、虚实以及成像区域或观察范围等.把它与公式法结合起来,可以互相补充、互相验证。
2.光路追踪法用作图法研究光的传播和成像问题时,抓住物点上发出的某条光线为研究对象。不断追踪下去的方法.尤其适合于研究组合光具成多重保的情况。
3.光路可逆法在几何光学中,一所有的光路都是可逆的,利用光路可逆原理在作图和计算上往在都会带来方便。
实验辅导
物理学是一门以实验为基础的科学。近年来对学生物理知识的各种全面测试中(如高考等)也非常重视对学生实验能力的考查。因此,物理实验的复习是整个总复习中不可缺少的一个重要组成部分.
一、实验的基本类型和要求
中学物理学生实验大体可以分为四范其要求如下:
1.基本仪器的使用除了初中已接触过的常用仪器(如天平秤、弹簧秤、压强计、气压计、温度计、安培计、伏特计等)外.高中又学习了打点计时器、螺旋测微器、游标卡尺、万用电表等,要求了解仪器的基本结构,熟悉各主要部件的名称,懂得工作(测量)原理,掌握合理的操作方法,会正确读数,明确使用注意事项等.
2.基本物理量的测量初中物理中巴学过长度、时间、质量、力、温度、电流强度、电压等物理量的测量,高中物理进一步学习了对微小长度和极短时间、加速度(包括g)、速度、电阻和电阻率、电动势、折射率、焦距等物理量的测量。要求明确被测物理量的含义,懂得具体的测量原理。掌握正确的实验方法(包括了解实验仪器、器材的规格性能、会安装和调试实验装置、能选择合理的实验步骤,正确进行数据测量以及能分析和排除实验中出现的常见故障等),妥善处理实验数据并得出结果。
3.验证物理规律计有验证共点力合成的平行四边形定则、有固定转动轴物体的平衡条件、牛顿第二定律、机械能守恒定律、玻意耳定律等。其要求与物理量的测量相同,着重注意分析实验误差,并能有效地采取相应措施尽量减少实验误差,提高准确度。
4.观察、研究物理现象,组装仪器如研究平抛运动、弹性碰撞、描绘等势线、研究电磁感应现象、变压器的作用、观察光的衍射现象。把电流计改装为伏特计等.其中,对观察型实验,只要求会正确使用仪器,显示出(或观察到)物理现象,并通过直觉的观察定性了解影响该现象的有关因素。对研究型实验(包括组装仪器),要求不仅能使用仪器,掌握正确的实验研究方法,把有关现象的物理内客反映出来;或把有关参数测量出来,还能够通过具体的测量作进一步的定量研一究或实验设计。
二、实验的设计思想
在中学物理实验中涉及的主要设计思想为:
1.垒积放大法把某些物理量(有时往在是难以直接测量的测量的微小量)累积后测量,或把它们放大后显示出来的一种方法。如通过若干次全振动的时间测出单摆的振动周期;把员杨螺杆的微小进退.通过周长较大的可动到度盘显示出来(螺旋测微器)等。
2.平衡法根据物理系统内普遍存在的对立的、矛盾的双方使系统偏离平衡的物理因素,列出对应的平衡方程式,从而找出影响平衡的一种方法如用天平测质量、验证有固定转动因乎衔条件、验证玻意耳定律等。
3.控制法在多因素的物理现象中,可以先控制某些量不变,依次研究某一个因素对现象产生影响的一种方法。如牛顿第二定律实验。可以先保持质量一定,研究加速度与力的关系等。
4.转换法用某些容易直接测量,(或显示)的量(或现象)代替不容易直接测(或显示)的量(或现象)。或者根据研究对象在一定条件下可以有相同的效果作间接的观察、测量。如把流逝的时间转换成振针周期性的振动;把对电流、电压、电阻的测量转换成对指针偏角的测量;用从等高处抛出的两球的水平位移代替它们的速度等。
5.留迹法把瞬息即逝的(位置、轨迹、图象等)记录下来的一种方法。如通过纸带上打出的小点记录小车的位置Z用描述法画出平抛物体的运动轨迹;用示波器显示变化的波形等。
三、实验验数据处理
数据处理是对原始实验记录的科学加工。通过数据处理,往往可以从一堆表面上难以觉察的、似乎毫无联系的数据中找出内在的规律,在中学物现中只要求掌握数据处理的最简单的方法.
1.列表法把被测物理量分类列表表示出来。通常需说明记录表的要求(或称为标题)、主要内容等。表中对各物理量的排列月惯上先原始记录数据,后计算果。列表法可大体反映某些因素对结果的影响效果或变化趋势,常用作其他数据处理方法的一种辅助手段。
2.算术平均值法把待测物理量的若干次测且值相加后除以测量次数。必须注意,求取算术平均值时,应按原测量仪器的准确度决定保留有效数字的位数。通常可先计算比直接测量值多一位,然后再四会五入。
3.图象法把实验测得的量按自变量和应变量的函数关系在坐标平面上用图象直观地显示出来.根据实验数据在坐标纸上画出图象时。最基本的要求是:
(1)两坐标轴要选取恰当的分度
(2)要有足够多的描点数目
(3)画出的图象应尽是穿过较多的描点在图象呈曲线的情况下,可先根据大多数描点的分布位置(个别特殊位置的奇异点可舍去),画出穿过尽可能多的点的草图,然后连成光滑的曲线,避免画成拆线形状。
四、实验误差分析
测量值与待测量真实值之差,称为测量误差。主要来源于仪器(如性能和结构的不完善)、环境(如温度、湿度、外磁场的影响等)、实验方法(如实验方法粗糙、实验理论不完善等)、人为因素(如观测者个人的生理、心理习惯、不同观察者的反应快慢不一等)四方面。在中学物理中只要求定性分析实验误差的主要原因,了解绝对误差和相对误差的概念。
高中物理向心力的知识点分析
高考物理只写公式可以,但是公式要在物理问题中能用到,而且要写一级公式,不要写二级结论,字母书写清晰规范,要让批卷老师一下子就能看出你会这个公式,而且在本题中要使用,这样一定能得分,而且公式要逐步书写,,这样每步都会有相应的分值,得分较高。
高考物理选择题秒杀技巧
高中物理向心力的知识点
向心力的概念
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。
向心力公式
该定义式不需要推导,也不需要研究为什么这么定义。
向心力的方向:始终指向物体圆周运动的圆心位置。
补充:如果物体做的不是圆周运动,那么向心力指向微小圆弧所对应的圆心(曲率中心)。
向心力不是力
?向心力?一词是从这种合外力作用所产生的效果而命名的。
这种效果可以由弹力、重力、摩擦力(及其他的力)等任何一力而产生,也可以由几个力的合力或其分力提供。
向心力的大小探究试验的具体操作步骤
(1)用质量不同的钢球和铝球做实验,使两球运动的半径r和角速度?相同。
可以观测出,向心力的大小与质量有关,质量越大,所需的向心力就越大。
(2)换用两个质量相同的小球做实验,保持它们运动的半径相同。
可以观测出,向心力的大小与转动的快慢有关,角速度越大,所需向心力也越大。
(3)仍用两个质量相同的小球做实验,保持小球运动角速度相同。
可以观测出,向心力的大小与小球运动的半径有关,运动半径越大,所需的向心力越大。
实验表明,向心力的大小跟物体的质量m、圆周半径r和角速度?都有关系。
进一步还可以证明,匀速圆周运动所需的向心力公式为 F=mr?
做圆周运动的物体,在向心力F的作用下,必然要产生一个加速度,这个加速度的方向与向心力的方向相同,总指向圆心,叫做向心加速度。
对于某一确定的匀速圆周运动来说,m以及r、v的大小、?都是不变的,所以向心力和向心加速度的大小不变,但向心力和向心加速度的方向却时刻在改变。
匀速圆周运动是瞬时加速度矢量的方向不断改变的运动,属于变加速运动的范畴。
向心力只改变方向却不改变速度的大小
圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。
对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。因此,圆周运动是一种加速度始终在改变的运动。就是因为这样的一种力,始终是沿着圆周半径指向圆周的中心,所以得名?向心力?。
向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向(切线的垂线方向称之为发现方向)上的加速度。
因此,向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。
非匀速圆周运动中的受力分析
这并非高考要求的内容,因为物理网只做基础的点拨。在非匀速圆周运动中,我们对物体进行受力分析,采用的还是直角坐标系的分解运算。建立坐标系,x轴与y轴的方向,分别为物体在某点的速度方向与速度垂线方向。
这样,x轴方向的力,会改变速度的大小;而y轴方向的力(向心力),会改变速度的方向。
显然,改变运动速率的切向加速度(Fx/m)并非由向心力产生(垂直关系)。
向心力与离心力
严格来说,离心力的说法是不科学的。
离心力(Centrifugal force)是一种惯性的表现,实际是不存在的。为使物体做圆周运动,物体需要受到一个指向圆心的力--即向心力。若以此物体为原点建立坐标,看起来就好像有一股与向心力大小相同方向相反的力,使物体向远离圆周运动圆心的方向运动。
当物体受力不足以提供圆周运动所需向心力时,看起来就好像离心力大于向心力了,物体会做远离圆心的运动,这种现象叫做?离心现象?。
假设若离心力存在,则与向心力相平衡,物体受力平衡,速度方向不会改变,是平衡态,不可能做圆周运动。
因此,这就证明了离心力并不存在,即离心力是以力的作用效果来虚拟出来的一个力,便于大家的感性认识和理解。
向心力的测量
从历年的考题来看,向心力的测量实验,并不是高考物理的重点内容。不过同学们还是要掌握基本的操作和原理。
实验设备中,配重为了调整平衡;配重环改变的是m的大小;弹簧调节杆是调整弹簧平衡的。通过弹簧的形变量(横杆上刻度线读数)与劲度系数k可以计算弹力,该力提供圆柱体及配重环的向心力。这个实验就是探究向心力的下述定义式(是否成立)的。
典型的向心力提供者
都有哪些力可以单独来提供向心力呢?
从场力来看,有万有引力、库仑力、洛伦兹力。
从接触力来看,有弹簧弹力、轨道内表面支持力、绳子拉力等等。
向心力的推导式
通过角速度与线速度的关系,我们还可以得出向心力的推导式如下:
需要指出的是,上述f指的是频率,T的倒数。f还有一个俗称,就是转数,单位是1/s;
高中物理人造卫星的知识点人造卫星
人造卫星(Manmade Satellite):环绕地球在空间轨道上运行(至少一圈)的无人航天器。人造卫星基本按照天体力学规律绕地球运动,但因在不同的轨道上受非球形地球引力场、大气摩擦、太阳引力、月球引力和光压的影响,实际运动情况非常复杂。人造卫星是发射数量最多、用途最广、发展最快的航天器。人造卫星发射数量约占航天器发射总数的90%以上。在这里讨论人造卫星一般是只讨论绕地球做匀速圆周运动的人造卫星。大部分的物理题,我们只考虑万有引力充当向心力的情况。
地球的人造卫星
和星球表面上的物体不同,人造卫星所受的万有引力只有一个作用效果,就是使它绕星球做匀速圆周运动,因此万有引力等于向心力。又由于我们定义重力是由于地球的吸引而使物体受到的力,因此可以认为地球的人造卫星,F=G=fn
(1)人造卫星的线速度和周期。人造卫星的向心力是由地球对它的万有引力提供的,可以看出,人造卫星的轨道半径r、线速度大小v和周期T是一一对应的,其中一个量确定后,另外两个量也就唯一确定了。离地面越高的人造卫星,匀速圆周运动线速度越小而周期越大。
(2)近地人造卫星。近地卫星的轨道半径r可以近似地认为等于地球半径R,又因为地面附近,近地卫星分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期。
(3)同步人造卫星。?同步?的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,根据⑴可知其轨道半径是唯一确定的,经过计算可求得同步卫星离地面的高度为h=3.6?107m?5.6R地(3.6万公里),而且该轨道必须在地球赤道的正上方,卫星的运转方向必须是由西向东,与地球自转相一致。
关于卫星的几个推论
(1)若行星表面的重力加速度为 g,行星的半径为R,则环绕其表面的卫星最低速度(类似于地球的第一宇宙速度)v为?gR;
(2)若行星的平均密度为?,则卫星周期的最小值T同、G之间存在?T^2=3?/G的关系式。
(3)卫星绕行星运转时,其线速度v角速度?,周期T同轨道半径r存在下列关系:
①v^2?1/r
②?^2?1/r^3
③T^2?r^3
(4)地球的半径R=6400Km,可以推算,人造卫星的周期不低于(T最小的是对应着近地卫星的周期)84分钟。
(5)由于同步卫星的周期T一定,有前文中的结论可知,它只能在赤道上空运行,且发射的高度h,运行的线速度v是固定的。
(6)太空中比较靠近的两个天体往往是以?双星?的形式存在的。它们由于万有引力而绕连线上一点做圆周运动,两者的周期T和角速度?一致。其轨道半径与质量成反比、环绕速度与质量成反比。做题的时候要注意,双星运行轨道半径r不同,且均与两者质心的连线距离(最好大家在解题的时候用l来表示这个量来区别一下)不一样。
三个宇宙速度的数值
第一宇宙速度:v1=7.9 km/s
第二宇宙速度:v2=11.2 km/s
第三宇宙速度:v3=16.9 km/s
我们下面来分析一下这三个宇宙速度的意义。当发射速度v与三个宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同:
第一种情况,当发射速度v
第二种情况,当发射速度v1?v
第三种情况,当发射速度v2?v
第四种情况,当发射速度v?v3时,被发射物体将从太阳系中逃逸。
由此可见,三个宇宙速度均是发射卫星过程中的不同临界状态,也是我们发射不同卫星的最关键参考数据。
人造卫星能量分析
对天体运动而言,研究的主要能量是引力势能+动能。
人造卫星的总能量包括两种类型:动能和引力势能。总能量为两者之和;这里的引力势能是卫星相对于地球(而非太阳)而言的。
对人造卫星而言,距离地球越远,具有的总能量越大。
具体来看:
R越大,E总=Ek+Ep越大;
R越大,Ek越小;
R越大,Ep越大;
(Ep的增量比Ek的减量要大,或者说Ep增大的率,要比Ek减小的率大)
Ek随着轨道半径R减小,可以通过向心力=万有引力的公式与动能的定义式推导出来。
在宇宙中的运动,如果推力器的引擎是关闭的,那么人造卫星的机械能是守恒的,因为只有重力做功;运动过程中,只有引力势能和动能之间的转化。强调:人造卫星一分为二的过程除外。
人造卫星引力势能公式的微积分推导
引力势能的表达式是:Ep=-GMm/R;其中Ep是引力势能,G是万有引力常量;M是地球的质量,m为研究对象的质量,R为m距离地球中心的距离;负号表示的是,引力势能为负值。因为我们规定的是无穷远处为零势能面。
从功和能之间的关系来分析,功的大小,等于能量的大小。只不过,在A点卫星的势能为负的。为什么是负的,同学们可以想一想把一个物体举高的过程,做的功与重力势能的改变及对应关系。
第一颗人造卫星
1957年10月4日。苏联宣布成功地把世界上第一颗绕地球运行的人造卫星送入轨道。美国官员宣称,他们不仅因苏联首先成功地发射卫星感到震惊,而且对这颗卫星的体积之大感到惊讶。这颗卫星重83公斤,比美国准备在第二年初发射的卫星重8倍,可是,美国没有苏联那么大的R7火箭,所以,发射不了。
苏联宣布说,这颗卫星的球体直径为55厘米,绕地球一周需1小时35分,距地面的最大高度为900公里,用两个频道连续发送信号。由于运行轨道和赤道成65度夹角,因此它每日可两次在莫斯科上空通过。苏联对发射这颗卫星的火箭没做详细报道,不过曾提到它以每秒8公里的速度离开地面。他们说,这次发射开辟了星际航行的道路。
1957年10月4日,这是人造卫星史上难忘的一天,苏联发射了第一颗人造地球卫星。这一事件具有划时代的意义,它宣告人类已经进入空间时代,天体物理学的理论也开始应用于实践阶段。
一、比较排除法
通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。
二、假设推理法
所谓假设推理法,就是假设题目中具有某一条件,推得一个结论,将这个结论与实际情况对比,进行合理性判断,从而确定正确选项。假设条件的设置与合理性判断是解题的关键,因此要选择容易突破的点来设置假设条件,根据结论是否合理判断假设是否成立。
三、特殊值代入法
有些选择题选项的代数表达式比较复杂,需经过比较繁琐的公式推导过程,此时可在不违背题意的前提下选择一些能直接反映已知量和未知量数量关系的特殊值,代入有关表达式进行推算,依据结果对选项进行判断。这种方法的实质是将抽象的、繁琐的一般性问题的推导、计算转化成具体的、简单的特殊性问题来处理,达到迅速、准确选择的目的。
四、逆向思维法
如果问题涉及可逆物理过程,当按正常思路判断遇到困难时,则可考虑运用逆向思维法来分析、判断。有些可逆物理过程还具有对称性,则利用对称规律是逆向思维解题的另一条捷径。
五、特殊值代入法
有些选择题选项的代数表达式比较复杂,需经过比较繁琐的公式推导过程,此时可在不违背题意的前提下选择一些能直接反映已知量和未知量数量关系的特殊值,代入有关表达式进行推算,依据结果对选项进行判断。这种方法的实质是将抽象的、繁琐的一般性问题的推导、计算转化成具体的、简单的特殊性问题来处理,达到迅速、准确选择的目的。
六、极限推理法
所谓极限推理法是把某些起决定性作用的物理量推向极端,通过简单计算、推理或合理性判断,并与一些显而易见的结果或熟悉的物理现象进行对比,从而做出正确的选择。
七、图像分析法
根据题目的内容画出图像或示意图,如物体的运动图像、UI图像、气体的状态变化图像等,再利用图像分析寻找答案。图像分析法具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确选项。