您现在的位置是: 首页 > 教育研究 教育研究
成都高考数学平均分_成都高考数学2017
tamoadmin 2024-06-18 人已围观
简介1.2017年高考数学必考等差数列公式作为一个8年前参加高考的老人来说,这个题目的话,设三角形ABC边长为X,体积为Y,然后取X范围为0~5根号3。然后你等边三角形ABC的话,你面积可以算出来,差不多是根号3/4的X?。然后高度的话,OF=5cm,然后减去O到AB的垂线距离,多少我懒得算了,反正不难。接下来三棱锥的体积公式算出来,然后根据x的范围,求出最大值。我记得好像要靠导数的,忘了,嘿嘿。20
1.2017年高考数学必考等差数列公式
作为一个8年前参加高考的老人来说,这个题目的话,设三角形ABC边长为X,体积为Y,然后取X范围为0~5根号3。然后你等边三角形ABC的话,你面积可以算出来,差不多是根号3/4的X?。然后高度的话,OF=5cm,然后减去O到AB的垂线距离,多少我懒得算了,反正不难。接下来三棱锥的体积公式算出来,然后根据x的范围,求出最大值。我记得好像要靠导数的,忘了,嘿嘿。
2017年高考数学必考等差数列公式
2017年高考数学试卷具体特点
紧扣考纲,核心突出
数学文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,基本上各占22分,共占110分。数列考察等差等比数列、和项关系递推公式及求和;三角解答题以解三角形两类题型出现,加上三角恒等变换与图象性质两道选填题;立几考察三视图、空间几何体的计算及平行、垂直的,夹角、体积、表面积的计算,解几考察三种圆锥曲线与直线的综合问题;函数则考察零点、图像、导数、单调性与最值等问题,仍属压轴题。
立足实际,注重应用
命题强调数学的应用,既考察了数学知识与方法在学科内的应用,也考察了数学知识在解决实际问题中的应用。如文科的第2题解决的是作物产量的对比分析评估,文科和理科的第19题,考察的都是在实际生活生产流水线上,对于产品的质量监督与抽样分析调查的问题,从而体现数学与实际生活的密不可分的联系。
立足基础,常规考察
命题中涵盖了接近80%的基础题型,题目设置难度不大,但要求学生对课本知识的全面掌握。文、理23考察的是极坐标、参数方程、普通直角坐标方程的转化,以及曲线参数方程中在求解距离最值时候进行的三角换元,解题思路明确,计算量一般,所以整体难度也不大。题型基础,出题直击考点,简明扼要。让考生倍感亲切,从试题形式、分析思路到解题方法,均是学生日常训练中,经常训练的常规题型。对基础扎实的学生,审题轻松。
适度创新,选拔能力
命题追求稳中求新,适度考察将已有的知识与方法迁移到新情境中解决问题的能力。如理12以数列为载体综合考察推理论证能力、运算求解能力和创新意识;文4,理科2都以“太极八卦图”作为命题载体,考察的是概率的计算,同时注重对中国传统文化的宣传与理解;文6,16,理7,16以三视图和球为载体综合考察了学生的空间思维的能力。
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)?公差
前n项的和Sn=首项?n+项数(项数-1)公差/2
公差d=(an-a1)?(n-1)
项数=(末项-首项)?公差+1
数列为奇数项时,前n项的和=中间项?项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差?项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n?2
即(首项+末项)?项数?2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)?公差
项数=(末项-首项)?公差+1
首项=末项-(项数-1)?公差
和=(首项+末项)?项数?2
差:首项+项数?(项数-1)?公差?2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2?和?项数-末项
末项=2?和?项数-首项
末项=首项+(项数-1)?公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+?99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q?N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)