您现在的位置是: 首页 > 教育研究 教育研究
2007高考数学试卷,2007数学高考答案
tamoadmin 2024-06-22 人已围观
简介1.谁有09年福建省理科高考数学卷的选择题及答案。2.求近几年数学高考试卷(带答案,最好是湖北省的)3.2009年和2010年江苏理科数学高考卷试题和答案4.高考数学空间几何 概率大题类型5.2007年高考全国卷1数学最后一题的第二问,除了标准答案的解法,还有别的方法吗?6.求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接2008年成人高考高起点《语文》试题一、(18分,每小题3分
1.谁有09年福建省理科高考数学卷的选择题及答案。
2.求近几年数学高考试卷(带答案,最好是湖北省的)
3.2009年和2010年江苏理科数学高考卷试题和答案
4.高考数学空间几何 概率大题类型
5.2007年高考全国卷1数学最后一题的第二问,除了标准答案的解法,还有别的方法吗?
6.求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接
2008年成人高考高起点《语文》试题一、(18分,每小题3分)
1. 下列词语中加点字的读音全都不相同的一项是
A 黑暗 暗哑 韵脚 黯然失色
B 调动 雕刻 稠密 民生凋敝
C 稍微 讥诮 末梢 形销骨立
D 阻止 狙击 租赁 神情沮丧
2. 下列各组词语中没有错别字的一项是
A 畏葸 参禅 鸠占鹊巢 摩肩接踵
B 寒喧 坎坷 严惩不贷 一愁莫展
C 伸张 宏伟 鞭辟入里 轻歌曼舞
D 题纲 参与 功亏一溃 牵强附会3. 依次填入下列横线处的词语,恰当的一项是
①相关条例提示:银行向异地信用卡用户支付大额现金,需要得到发卡地所在银行____。
②为了改变被动局面,尽快恢复生产,工厂决定____部分刚刚退休的工程技术人员。
③对生活在经济条件较差地区的烈士遗属,当地政府应该履行____的义务,以告慰烈士的英灵。
A 受权 启用 扶养
B 授权 起用 扶养
C 受权 起用 抚养
D 授权 启用 抚养4. 下列各句中加点的成语使用不正确的一项是
A 康有为等维新人士深知,保守的清政府如果再不改弦更张,变法图强,整个江山就有被西方列强瓜分的危险。
B 六月中旬以来,深沪股市一路下跌,那情形真是势如破竹,叫人不得不为中国股市的前途捏一把冷汗。
C 谁也没有想到,在经历了工厂破产、家庭破裂的重重打击之后,他还能够东山再起,再次在商场大显身手。
D 在文章中使用繁笔,有它的好处:描摹事务状态,可以穷形尽相;刻画人物心理,能够细致入微。5. 下列句子没有语病的一项是
A 能否有效地遏制房价过快增长,从而做到“居者有其屋”,是评价政府作为的重要方面。
B 刚刚上市的这种玉米,是经过改良而制成的、吃起来有水果味的,被称为“水果玉米”。
C 鸟巢、水立方等一座座现代化的体育场馆进行几年的艰苦奋战,矗立在首都人民的面前。
D 如何避免生猪收购价格不再上涨,稳定猪肉市场供应,是需要相关部门着力考虑的问题。6. 填入下面横线处,与上下文衔接最恰当的一项是
化学农药的使用是三大公害之一,理应加以限制。但是,______________。有实验表明,在当前的生产水平下,如果不使用化学农药,有些蔬菜会减收80%以上。实际上,不同化学农药的毒性及其对环境的污染程度是很不相同,我们要禁止使用那些高毒、剧毒和在人体内可能长期残留的农药。
A 有一些病虫害还是主要依赖化学农药进行控制,所以目前人类还离不开化学农药,也就还不能限制使用农药。
B 限制不等于不用,这是因为目前人类还离不开化学农药,甚至有一些病虫害主要以来化学农药进行控制。
C 事实上还不能加以限制,因为有一些病虫害主要依赖化学农药进行控制,人类目前还离不开化学农药。
D 人类目前还离不开化学农药,甚至有一些病虫害主要依赖化学农药进行控制,因此适当的限制是必要的。二、(12分,每小题3分)
阅读下面的现代文,完成7~10题。
在南极,虽然连热气腾腾的火山也被控制在冰封雪压之下,但是也有超然于冰雪之外的地方。若从飞机上看下去,在罗斯岛以西有一片黑色的没有冰雪的土地,在茫茫白色的世界里显得格外突出,这就是干谷。实际上,干谷地区是由三个谷地组成的,自南往北一次是泰勒谷、右谷和维克多利亚谷。
平谷地区有几个非常特殊的湖。其中最著名的是右谷中的汪尼达湖和泰勒谷中的巴内湖,都好似咸水湖。有趣的是,这些湖水的咸度是分层的,表层咸度最小,上面为3-4米厚的冰所覆盖。越往深处,咸度越大。例如:汪尼达湖附近年平均温度为零下20℃左右,但在69米深的湖底,水温却高达25℃,其咸度比海水高10倍。还有一个小湖,其湖水的咸度是如此之高,以至在零下50℃时也不会结冰。水温的热能主要还是来自太阳。在夏天,太阳光线透过冰层,连续不断地照射下去,由于湖水咸度很高,很容易就把这些热能吸收并储存起来。科学家们发现,在这些湖水中,居然生长着海藻和某些类型的真菌。
科学家们对干谷地区的岩石和土壤也特别感兴趣。这里的原始土壤,在许多性质上,与火星和月球上的土壤极为相似。因此,从事火星探测的科学家们,专门到南极地区的岩石标本所作的古地磁研究表明,大约在10亿多年以前,现在的南极是位于赤道附近的。
据研究,大约在5万年以前,干谷地区同样也被冰雪所覆盖。实际上,这些山谷就是冰川刻划出来的。那么,后来是由于什么原因,冰川都消失的无影无踪了呢?而且,按理说,沿海地区的降雪量是很大的,其他地区的积雪都年复一年地积存下来,唯独干谷地区却能把降雪融化的干干净净,不留痕迹,这又是为什么呢?这正是科学家们急于想知道的。但是,人类走到哪里,就会把污染带到哪里。由于进入干谷的人越来越多,给干谷地区所带来的污染也就愈来愈严重。因此很有可能,在科学家们还没有搞清楚干谷的奥秘之前,哪里独特的科学价值可能就已经不复存在了。7. 下面对第一段文意的理解,不正确的一项是
A 在南极,即使冒着热气的火山也覆盖着冰雪
B 在南极,有一片没有冰雪的土地被称为干谷
C 干谷在罗斯岛以西,从高空看土地是黑色的
D 干谷呈东西走向,是由三个谷地连接组成的8. 下面对第二段文意的理解,不正确的一项是
A 干谷地区的咸水湖咸度是分层次的,越往深层咸度越高
B 干谷地区的咸水湖温度是分层次的,越往深层温度越高
C 干谷地区的咸水湖不结冰,它们的热量来自阳光的照射
D 干谷地区的咸水湖的咸度虽然很高,但是也有生命存在9.下面对第三段文意的理解,正确的一项是
A 干谷地区的岩石和土壤比火星和月球上的岩石和土壤性质更为原始
B 干谷地区的岩石和土壤与火星和月球上的岩石和土壤颜色极为相似
C 考察关顾地区有利于研究火星探测是南极科学探索的一项重要发现
D 科学家通过研究干谷地区的岩石标本表明南极大陆原来离赤道不远10. 下面对第四段文意的理解,正确的一项是
A 5万年以前干谷地区气候变暖,冰雪才消失得无影无踪
B 科学家认为,干谷地区的山谷是被冰川流动切割出来的
C 干谷地区的降雪比其他地区少,所以没留下冰雪的痕迹
D 本文作者对人类研究开发利用干谷地区的前景充满信心三、(25分)
阅读下面的现代文,完成11~15题。
幸福是一种内心快乐的状态。它使我们由衷地感到:活着是多么有意义,人生是多么美好。因此,幸福的体验直接地包含着我们对生命意义的肯定评价。感到幸福,也就是感到自己的生命意义得到了实现。不管拥有这种体验的时间多么短暂,这种体验却总是指向人整个一生的,因为它所包含的是对生命意义的总体评价。
当一个人感觉到自己很幸福时,他的心中就会响起这样一个声音:“为了这个时刻,我这一生值了!”如果你没有这种感觉而又说自己“幸福”,那就是滥用了大字眼。所以,幸福不是零碎和表面的情绪,而是灵魂的愉悦。幸福只是灵魂的事,肉体只会有快感,不会有幸福感。
苦难与幸福是相反的东西。但苦难与幸福有一个共同之处,就是都直接和灵魂有关,并且都牵涉到对生命意义的评价。在通常情况下,我们的灵魂都是沉睡着的,一旦我们感到幸福或遭遇苦难时,它便醒来了。如果说幸福是灵魂的巨大愉悦,这愉悦源自对生命的美好意义的强烈感受;那么,苦难之为苦难,正在于它撼动了生命的根基,打击了人对生命意义的信心,因而使灵魂陷入了巨大痛苦。生命意义仅是灵魂的对象,对它无论是肯定还是否定,只要是真切的,就必定有灵魂的出场。外部的事件再悲惨,如果它没有震撼灵魂,也只能是一个精神事件,却称不上是苦难。一种东西能够把灵魂震醒,使之处于虽然痛苦却富有生机的紧张状态,那它一定具有某种精神价值。
快感和痛感是肉体的感觉,快乐和痛苦是心理现象,而幸福和苦难则完全属于灵魂。幸福是灵魂的叹息和歌唱,苦难时灵魂的呻吟和抗议,两者凸现的是对生命意义的或正或负的强烈体验。
幸福是生命意义得以实现的鲜明感觉。一个人在苦难中也可以感觉到生命意义的实现,因为苦难与幸福并不一定是互相排斥的。当然,在更多情况下,人们在苦难中感觉到的确实生命意义的受挫。但是我相信,即使是这样,只要没有被苦难彻底击败,苦难仍会深化一个人对于生命意义的认识。
领悟悲剧需要有深刻的心灵,人生的艰难关头最能检验一个人的灵魂深浅。有的人一声遭遇不幸,却未尝体验过真正的悲剧情感。相反,表面上一帆风顺的人也可能经历巨大的内心悲剧。11. 从第一段的文意看,“对生命意义的肯定评价”就是_______(4分)12. 根据第一段、第二段的文意,回答下面的问题。(6分)
(1)为什么说“幸福不是零碎和表面的情绪,而是灵魂的愉悦”?
(2)快感和幸福有什么不同?13. 根据第三段的文意,解释“对它无论是肯定还是否定”一句中包含的下列词语的意义。(6分)
“它”是指____。 “肯定”_____。 “否定”是指_____。14. 根据第四段的文字表述,完成下表。(每个方框只填两个字)(6分)
(正体验) (负体验)
15. 用一句话概括第五段的中心意思。(不超过20个字)(3分)
四(25分)
阅读下面的文言文,完成16~18题。
夫得言不可以不察,数传而白为黑,黑为白。故狗似玃①,玃似母猴②,母猴似人,人之与狗则远矣。此愚者之所以大过③也。
宋之丁氏家无井,而出溉汲,常一人居外。及其家穿井④,告人曰:“吾穿井得一人。”有闻而传之者曰:“丁氏穿井得一人。”国人道之,闻之于宋君。宋君令人问之于丁氏,丁氏对曰:“得一人之使,非得一人于井中也。”求闻之若此,不若无闻也。
子夏⑤之晋,过卫,有读史记⑥者曰:“晋师三豕涉河。”子夏曰:“非也,是己亥也。夫己与三相近,豕与亥相似。”至于晋而问之,则曰“晋师己亥涉河”也。
辞多类非而是,多类是而非,是非之经⑦,不可不分,此圣人之所慎也。然则何以慎?缘物之情及人之情,以为⑧所闻,则得之矣。
注①玃(ju):大猿猴。②母猴:又叫沐猴、猕猴。③过:错误。④穿井:打井。
⑤子夏:孔子的学生。⑥史记:史书。⑦经:界限。⑧为:这里是审察的意思。16. 文中能够表明本文中心论点的一句话是什么?采用了什么论证方法?(4分)17. “丁氏穿井”闹出了什么笑话?为什么会出现这样的笑话?子夏为什么敢于质疑书上的记载?(6分)18. 将文章最后一句话(画线部分)译成现代汉语,并说说它的含义。(6分)阅读下面的古诗,完成19~20题。
跋子瞻和陶诗
黄庭坚子瞻谪岭南,时宰欲杀之。
饱吃惠州饭,细和渊明诗。
彭泽千载人,东坡百世士。
出处虽不同,风味乃相似。
注时宰:指当时的宰相章惇,他对苏轼一贬再贬,必欲致之死地。
彭泽:指陶渊明,他任彭泽县令后一百多天即弃官归隐。 出处:出仕和隐居。19. “饱吃惠州饭,细和渊明诗”表现了苏轼怎样的情怀?这两句诗具有怎样的表达效果?(4分)20. “千载人”和“百世士”是什么意思?最后两句诗表达了诗人怎样的观点?(5分)五、作文(70分)
21. 一位慈善家好不容易帮助某个青年治好了腿疾,没想到这个青年后来成了抢劫犯。这位慈善家深有感慨地说:“我只想让他尽快走起来,却没有教他应该往哪里走。”请以此事为话题,写一篇200字的议论短文。(20分)
22. 沟通是人类生存和发展不可或缺的行为方式。小到个人,大到国家,都需要沟通。沟通可以加强了解,化解矛盾,增进友谊,促进和谐。请以“沟通”为话题,写一篇不少于600字的文章,题目自拟,文体不限(诗歌除外)。(50分)
谁有09年福建省理科高考数学卷的选择题及答案。
2010年湖北高考理科数学试卷及答案
湖北理综湖北数学湖北理综湖北数学湖北理综湖北数学湖北理综由于我的分负了下不好,你自己下下,不用积分,,,,,,
求近几年数学高考试卷(带答案,最好是湖北省的)
2009年普通高等学校招生全国统一考试(福建卷)
数学(理工农医类)
一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 函数 最小值是
A.-1 B. C. D.1
1.答案:B
[解析]∵ ∴ .故选B
2.已知全集U=R,集合 ,则 等于
A. { x ∣0 x 2} B { x ∣0<x<2}
C. { x ∣x<0或x>2} D { x ∣x 0或x 2}
2.答案:A
[解析]∵计算可得 或 ∴ .故选A
3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于
A.1 B C.- 2 D 3
3.答案:C
[解析]∵ 且 .故选C
4. 等于
A. B. 2 C. -2 D. +2
4.答案:D
[解析]∵ .故选D
5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >
的是
A. = B. = C . = D
5.答案:A
[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。
6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m
A.2 B .4 C. 8 D .16
6.答案:C
[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C
7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m
A.m // 且l // B. m // l 且n // l
C. m // 且n // D. m // 且n // l
7.答案:B
[解析]若 ,则可得 .若 则存在
8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动
员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,
指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为
A.0.35 B 0.25 C 0.20 D 0.15
8.答案:B
[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B
9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,
a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m
A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积
C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积
9.答案:C
[解析]依题意可得 故选C.
10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是
A. B C D
10. 答案:D
[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.
第二卷 (非选择题共100分)
二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。
11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m
11. 答案:2
解析:由 ,所以 故 。
12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________
12. 答案:1
解析:观察茎叶图,
可知有 。
13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m
13. 答案:2
解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。
14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.
14. 答案:
解析:由题意可知 ,又因为存在垂直于 轴的切线,
所以 。
15.五位同学围成一圈依序循环报数,规定:
①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.
15. 答案:5
解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。
三解答题w.w.w.k.s.5.u.c.o.m
16.(13分)
从集合 的所有非空子集中,等可能地取出一个。
(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E
16、解:(1)记”所取出的非空子集满足性质r”为事件A
基本事件总数n= =31
事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}
事件A包含的基本事件数m=3
所以
(II)依题意, 的所有可能取值为1,2,3,4,5
又 , ,
,
故 的分布列为:
1 2 3 4 5
P
从而E +2 +3 +4 +5
17(13分)
如图,四边形ABCD是边长为1的正方形, ,
,且MD=NB=1,E为BC的中点
(1) 求异面直线NE与AM所成角的余弦值
(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m
17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标
依题意,得 。
,
所以异面直线 与 所成角的余弦值为 .A
(2)假设在线段 上存在点 ,使得 平面 .
,
可设
又 .
由 平面 ,得 即
故 ,此时 .
经检验,当 时, 平面 .
故线段 上存在点 ,使得 平面 ,此时 .
18、(本小题满分13分)
如图,某市拟在长为8km的道路OP的一侧修建一条运动
赛道,赛道的前一部分为曲线段OSM,该曲线段为函数
y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为
S(3,2 );赛道的后一部分为折线段MNP,为保证参赛
运动员的安全,限定 MNP=120
(I)求A , 的值和M,P两点间的距离;
(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m
18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,
解法一
(Ⅰ)依题意,有 , ,又 , 。
当 是,
又
(Ⅱ)在△MNP中∠MNP=120°,MP=5,
设∠PMN= ,则0°< <60°
由正弦定理得
,
故
0°< <60°, 当 =30°时,折线段赛道MNP最长
亦即,将∠PMN设计为30°时,折线段道MNP最长
解法二:
(Ⅰ)同解法一
(Ⅱ)在△MNP中,∠MNP=120°,MP=5,
由余弦定理得 ∠MNP=
即
故
从而 ,即
当且仅当 时,折线段道MNP最长
注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等
19、(本小题满分13分)
已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴
的左、右两个交点,直线 过点B,且与 轴垂直,S为 上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m
19.解析
解法一:
(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.
(1)当∠BOT=60°时, ∠SAE=30°.
又AB=2,故在△SAE中,有
(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,
(Ⅱ)假设存在 ,使得O,M,S三点共线.
由于点M在以SB为直线的圆上,故 .
显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .
由
设点
故 ,从而 .
亦即
由 得
由 ,可得 即
经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.
解法二:
(Ⅰ)同解法一.
(Ⅱ)假设存在a,使得O,M,S三点共线.
由于点M在以SO为直径的圆上,故 .
显然,直线AS的斜率k存在且K>0,可设直线AS的方程为
由
设点 ,则有
故
由 所直线SM的方程为
O,S,M三点共线当且仅当O在直线SM上,即 .
故存在 ,使得O,M,S三点共线.
20、(本小题满分14分)
已知函数 ,且 w.w.w.k.s.5.u.c.o.m
(1) 试用含 的代数式表示b,并求 的单调区间;
(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m
20.解法一:
(Ⅰ)依题意,得
由 .
从而
令
①当a>1时,
当x变化时, 与 的变化情况如下表:
x
+ - +
单调递增 单调递减 单调递增
由此得,函数 的单调增区间为 和 ,单调减区间为 。
②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R
③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为
综上:
当 时,函数 的单调增区间为 和 ,单调减区间为 ;
当 时,函数 的单调增区间为R;
当 时,函数 的单调增区间为 和 ,单调减区间为 .
(Ⅱ)由 得 令 得
由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。
观察 的图象,有如下现象:
①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。
②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;
③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;
线段MP的斜率Kmp
当Kmp- =0时,解得
直线MP的方程为
令
当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。
当 时, .
所以存在 使得
即当 MP与曲线 有异于M,P的公共点
综上,t的最小值为2.
(2)类似(1)于中的观察,可得m的取值范围为
解法二:
(1)同解法一.
(2)由 得 ,令 ,得
由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )
(Ⅰ) 直线MP的方程为
由
得
线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数
上有零点.
因为函数 为三次函数,所以 至多有三个零点,两个极值点.
又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.
等价于 即
又因为 ,所以m 的取值范围为(2,3)
从而满足题设条件的r的最小值为2.
21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,
(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m
已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数
(3)(本小题满分7分)选修4-5:不等式选讲
解不等式∣2x-1∣<∣x∣+1
21.
(1)解:依题意得
由 得 ,故
从而由 得
故 为所求.
(2)解:圆的方程可化为 .
其圆心为 ,半径为2.
(3)解:当x<0时,原不等式可化为
又 不存在;
当 时,原不等式可化为
又
当
综上,原不等式的解集为
2009年和2010年江苏理科数学高考卷试题和答案
2010年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 为虚数单位,则=
A.- B.-1 C. D.1
2.已知,则=
A. B. C. D.
3.已知函数,若,则x的取值范围为
A. B.
C. D.
4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则
A. n=0 B. n=1 C. n=2 D. n 3
试卷类型:A
5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=
A.0.6 B.0.4 C.0.3 D.0.2
6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=
A.2 B. C. D.
7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为
A.0.960 B.0.864 C.0.720 D.0.576
8.已知向量a=(x+z,3),b=(2,y-z),且a⊥?b.若x,y满足不等式,则z的取值范围为
A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]
9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.即不充分也不必要的条件
10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=
A.5太贝克 B.75In2太贝克
C.150In2太贝克 D.150太贝克
二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。
11. 的展开式中含的项的系数为
12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)
13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。
试卷类型A
14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;
(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:
由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分10分)
设的内角所对的边分别为,已知
(Ⅰ)求的周长
(Ⅱ)求的值
17. (本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)
18. (本小题满分12分)
如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当=1时,求证:⊥;
(Ⅱ)设二面角的大小为,求的最小值.
19.(本小题满分13分)
已知数列的前项和为,且满足:, N*,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.
20. (本小题满分14分)
平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
21.(本小题满分14分)
(Ⅰ)已知函数,,求函数的最大值;
(Ⅱ)设…,均为正数,证明:
(1)若……,则…;
(2)若…=1,则……。
高考数学空间几何 概率大题类型
2010 年江苏高考数学试题 一、填空题 1、设集合A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大 A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 理科附加题 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方差 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方差中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,最后输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知集合 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的最大值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公差不为零的等差数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,假设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? 学科网 (3) 记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网
2007年高考全国卷1数学最后一题的第二问,除了标准答案的解法,还有别的方法吗?
(18)(本小题满分12分)
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示: (Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)已知每吨该商品的销售利润为2千元,?表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求?的分布列和数学期望.答案:(18)本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分。
解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.……3分
(Ⅱ)?的可能值为8,10,12,14,16,且
P(?=8)=0.22=0.04,
P(?=10)=2×0.2×0.5=0.2,
P(?=12)=0.52+2×0.2×0.3=0.37,
P(?=14)=2×0.5×0.3=0.3,
P(?=16)=0.32=0.09.
的分布列为8?10?12?14?16
P?0.04?0.2?0.37?0.3?0.09
……9分
F?=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4千元)……12分
(19)本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑能力,满分12分。
解法一:
(I)证明:在正方体中,AD′?A′D,AD′⊥AB,又由已知可得
PF‖A′D,PH‖AD′,PQ‖AB,
所以PH⊥PF,PH⊥PQ,
所以PH⊥平面PQEF.
所以平面PQEF和平面PQGH互相垂直,……4分
(Ⅱ)证明:由(Ⅰ)知
,又截面PQEF和截面PQCH都是矩形,且PQ=1,所以截面PQEF和截面PQCH面积之和是,是定值.
答案:(19)本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑能力,满分12分。
解法一:
(I)证明:在正方体中,AD′?A′D,AD′⊥AB,又由已知可得
PF‖A′D,PH‖AD′,PQ‖AB,
所以PH⊥PF,PH⊥PQ,
所以PH⊥平面PQEF.
所以平面PQEF和平面PQGH互相垂直,……4分
(Ⅱ)证明:由(Ⅰ)知
,又截面PQEF和截面PQCH都是矩形,且PQ=1,所以截面PQEF和截面PQCH面积之和是,是定值.?8分
(III)解:连结BC′交EQ于点M.
因为PH‖AD′,PQ‖AB,
所以平面ABC′D′和平面PQGH互相平行,因此D′E与平面PQGH所成角与
D′E与平面ABC′D′所成角相等.
与(I)同理可证EQ⊥平面PQGH,可知EM⊥平面ABC′D′,因此EM与D′E的比值就是所求的正弦值.
设AD′交PF于点N,连结EN,由FD=l-b知
因为AD′⊥平面PQEF,又已知D′E与平面PQEF成?角,
所以?D′E=?即?,
解得?,可知E为BC中点.
所以EM=?,又D′E=?,
故D′E与平面PQCH所成角的正弦值为?.
解法二:
以D为原点,射线DA、DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得DF-l-b,故
A(1,0,0),A′(1,0,1),D(0,0,0),D′(0,0,1),
P(1,0,b),Q(1,1,b),E(1,-b,1,0),?
F(1-b,0,0),G(b,1,1),H(b,0,1).
(I)证明:在所建立的坐标系中,可得
因为?是平面PQEF的法向量.
因为?是平面PQGH的法向量.
因为?,
所以平面PQEF和平面PQGH互相垂直?……4分
(II)证明:因为?,所以?,所以PQEF为矩形,同理PQGH为矩形.
在所建立的坐标系中可求得?
所以?,
所以截面PQEF和截面PQCH面积之和为?,是定值.?8分
(III)解:由已知得?角,又?可得
即? 所以?D′E与平面PQGH所成角的正弦值为……12分
求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接
哈哈,当然有了!
那一题有两个思路
1.可以通过特征跟求出Bn的通项。然后经过放缩得到结果。
2.也是数学归纳法。 证明从K到K+1的时候不用Bn-根2
而是直接用Bn证
我说说这个吧。
⑴N=1时显然成立
⑵假设N=K时成立。
则当N=K+1时,
函数F(X)=(3X+4)/(2X+3)在X>0时递增
所以(3根2+4)/(2根2+3)<Bn+1=(3Bn+4)/(2Bn+3)<=(3A4n-1+4)/(2A4n-1+3)
(3A4n-1+4)/(2A4n-1+3)=A4N+3
所以当N=K+1也成立
10年的
一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},AB={3},则实数a=______▲________
2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________
3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__
4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
5、设函数f(x)=x(ex+ae-x),xR,是偶函数,则实数a=_______▲_________
6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______
7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S1 n1 SS+2n S33 nn+1 否 输出S 结束 是
8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____
10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____
11、已知函数,则满足不等式的x的范围是____▲____
12、设实数x,y满足38,49,则的最大值是_____▲____
13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则__▲
14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=,则S的最小值是_______▲_______
二、解答题
15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形两条对角线的长(2)设实数t满足()=0,求t的值
16、(14分)如图,四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,AB‖DC,BCD=900(1)求证:PCBC(2)求点A到平面PBC的距离
17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角ABE=α,ADE=β(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大
18.(16分)在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右顶点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0,①设动点P满足,求点P的轨迹②设,求点T的坐标③设,求证:直线MN必过x轴上的一定点(其坐标与m无关)ABOF
19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.①求数列的通项公式(用表示)②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为
20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数①求证:函数具有性质②求函数的单调区间(2)已知函数具有性质,给定,,且,若||<||,求的取值范围
理科附加题21(从以下四个题中任选两个作答,每题10分)(1)几何证明选讲AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k0,kR,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值(3)参数方程与极坐标在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值(4)不等式证明选讲已知实数a,b0,求证:22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列(2)求生产4件甲产品所获得的利润不少于10万元的概率23、(10分)已知△ABC的三边长为有理数(1)求证cosA是有理数(2)对任意正整数n,求证cosnA也是有理数