您现在的位置是: 首页 > 教育研究 教育研究

高考数学文科试题,高考题文科数学及答案解析

tamoadmin 2024-06-30 人已围观

简介1.2022全国新高考Ⅱ卷文科数学试题及答案解析2.高三文科数学常考题型归纳3.2022年全国新高考1卷数学试题及答案详解4.高考文科数学内容5.求2012浙江高考文科数学最后一道选择题解法,欢迎浙江考生6.2010湖南高考文科数学试题2006年上海高考数学试卷(文科) 一.填空题:(本大题共12小题,每小题4分,共48分) 1. 已知集合A = { –1 , 3 , 2m – 1 },集合B =

1.2022全国新高考Ⅱ卷文科数学试题及答案解析

2.高三文科数学常考题型归纳

3.2022年全国新高考1卷数学试题及答案详解

4.高考文科数学内容

5.求2012浙江高考文科数学最后一道选择题解法,欢迎浙江考生

6.2010湖南高考文科数学试题

高考数学文科试题,高考题文科数学及答案解析

2006年上海高考数学试卷(文科)

一.填空题:(本大题共12小题,每小题4分,共48分)

1. 已知集合A = { –1 , 3 , 2m – 1 },集合B = { 3 , 4 }。若B ? A,则实数m =__。

2. 已知两条直线l1:ax + 3y – 3 = 0 , l2:4x + 6y – 1 = 0。若l1‖l2,则a =______。

3. 若函数f(x) = ax(a > 0且a ? 1)的反函数的图像过点( 2 , –1 ),则a =_____。

4. 计算: =__________。

5. 若复数z = ( m – 2 ) + ( m + 1 )i为纯虚数(i为虚数单位),其中m ? R,则| | =__________。

6. 函数y = sinxcosx的最小正周期是_____________。

7. 已知双曲线的中心在原点,一个顶点的坐标是( 3 , 0 ),且焦距与虚轴长之比为5:4,则双曲线的标准方程是________。

8. 方程log3( x2 – 10 ) = 1 + log3x的解是_______。

9. 已知实数x , y满足 ,则y – 2x的最大值是______。

10. 在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是__________。(结果用分数表示)

11. 若曲线|y|2 = 2x + 1与直线y = b没有公共点,则b的取值范围是________。

12. 如图,平面中两条直线l1和l2相交于点O。对于平面上任意一点M,若p , q分别是M到直线l1和l2的距离,则称有序非负实数对( p , q )是点M的“距离坐标”。根据上述定义,“距离坐标”是( 1 , 2 )的点的个数是________。

二.选择题:(本大题共4小题,每小题4分,共16分)

13. 如图,在平行四边形ABCD中,下列结论中错误的是( )

(A) (B)

(C) (D)

14. 如果a < 0 , b > 0,那么,下列不等式中正确的是( )

(A) (B) (C) a2 < b2 (D) |a| > |b|

15. 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )

(A)充分非必要条件 (B)必要非充分条件

(C)充分必要条件 (D)既非充分又非必要条件

16. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

(A) 48 (B) 18 (C)24 (D) 36

三.解答题:(本大题共6小题,共86分)

17.(本小题满分12分)

已知a是第一象限的角,且 ,求 的值。

18.(本小题满分12分)

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1°)?

19.(本小题满分14分)

在直三棱柱ABC-A1B1C1中,?ABC = 90° , AB = BC = 1。

(1) 求异面直线B1C1与AC所成角的大小;

(2) 若直线A1C与平面ABC所成角为45°,求三棱锥A1-ABC的体积。

20.(本小题满分14分)

设数列{an}的前n项和为Sn,且对任意正整数n×an + Sn = 4096。

(1) 求数列{an}的通项公式;

(2) 设数列{log2an}的前n项和为Tn,对数列{Tn},从第几项起Tn < –509?

21.(本小题满分16分)

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F( , 0 ),且右顶点为D( 2 , 0 ),设点A的坐标是( 1 , )。

(1) 求该椭圆的标准方程;

(2) 若是P椭圆上的动点,求线段PA中点M的轨迹方程;

(3) 过原点O的直线交椭圆于点B , C,求△ABC面积的最大值。

22.(本小题满分18分)

已知函数 有如下性质:如果常数a > 0,那么该函数在 上是减函数,在 上是增函数。

(1) 如果函数 在 上是减函数,在 上是增函数,求实常数b的值;

(2) 设常数c ? [ 1 , 4 ],求函数 ( 1 ? x ? 2 )的最大值和最小值;

(3) 当n是正整数时,研究函数 ( c > 0 )的单调性,并说明理由。

上海数学(文史类)参考答案

一、(第1题至笫12题)

1. 4 2. 2 3. 4. 5. 3 6.π 7.

8. 5 9. 0 10. 11.-1<b<1 12. 4

二、(第13题至笫16题)

13. C 14. A 15. A 16. D

三、(第17题至笫22题)

17.解: =

由已知可得sin ,

∴原式= .

18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB<90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19.解:(1) ∵BC‖B1C1, ∴∠ACB为异面直线B1C1与AC所成角(或它的补角)

∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°,

∴异面直线B1C1与AC所成角为45°.

(2) ∵AA1⊥平面ABC,

∠ACA1是A1C与平面ABC所成的角, ∠ACA =45°.

∵∠ABC=90°, AB=BC=1, AC= ,

∴AA1= .

∴三棱锥A1-ABC的体积V= S△ABC×AA1= .

20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048.

当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an

∴ = an=2048( )n-1.

(2) ∵log2an=log2[2048( )n-1]=12-n,

∴Tn= (-n2+23n).

由Tn<-509,解待n> ,而n是正整数,于是,n≥46.

∴从第46项起Tn<-509.

21.解(1)由已知得椭圆的半长轴a=2,半焦距c= ,则半短轴b=1.

又椭圆的焦点在x轴上, ∴椭圆的标准方程为

(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),

由 x= 得 x0=2x-1

y= y0=2y-

由,点P在椭圆上,得 ,

∴线段PA中点M的轨迹方程是 .

(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.

当直线BC不垂直于x轴时,说该直线方程为y=kx,代入 ,

解得B( , ),C(- ,- ),

则 ,又点A到直线BC的距离d= ,

∴△ABC的面积S△ABC=

于是S△ABC=

由 ≥-1,得S△ABC≤ ,其中,当k=- 时,等号成立.

∴S△ABC的最大值是 .

22.解(1) 由已知得 =4, ∴b=4.

(2) ∵c∈[1,4], ∴ ∈[1,2],

于是,当x= 时, 函数f(x)=x+ 取得最小值2 .

f(1)-f(2)= ,

当1≤c≤2时, 函数f(x)的最大值是f(2)=2+ ;

当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c.

(3)设0<x1<x2,g(x2)-g(x1)= .

当 <x1<x2时, g(x2)>g(x1), 函数g(x)在[ ,+∞)上是增函数;

当0<x1<x2< 时, g(x2)>g(x1), 函数g(x)在(0, ]上是减函数.

当n是奇数时,g(x)是奇函数,

函数g(x) 在(-∞,- ]上是增函数, 在[- ,0)上是减函数.

当n是偶数时, g(x)是偶函数,

函数g(x)在(-∞,- )上是减函数, 在[- ,0]上是增函数.

2022全国新高考Ⅱ卷文科数学试题及答案解析

已知数列{an} 的前n项和Sn=2n^2+2n,数列{bn}的前n项和Tn=2-bn

(I)求数列{an}与{bn}的通项公式;

(II)设cn=(an)^2*bn,证明:当且仅当n≥3时,c(n+1)<cn.

高三文科数学常考题型归纳

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

2022年全国新高考1卷数学试题及答案详解

文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!

文科数学常考题型有哪些

圆/坐标系与参数方程/不等式

一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。

函数

一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。

解析几何

一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。

立体几何

一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。

概率

一般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。

三角函数/数列

一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。

文科数学成绩怎么提高

文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。

粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将答案写在卷上,达到降低高考恐惧感,增强自信心的目的。

我推荐:高考数学复习重点题型有哪些

“偷懒”的第一要任就在于减少复习的负荷量。数学学习最大的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。

高考文科数学内容

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点 总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关 文章 :

★ 2022高考北京卷数学真题及答案解析

★ 2022高考甲卷数学真题试卷及答案

★ 2022北京卷高考文科数学试题及答案解析

★ 2022高考全国甲卷数学试题及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022全国乙卷理科数学真题及答案解析

★ 2022高考数学大题题型总结

★ 2022年高考全国一卷作文预测及范文

★ 2022年高考数学必考知识点总结最新

★ 2022年全国乙卷高考数学(理科)试卷

求2012浙江高考文科数学最后一道选择题解法,欢迎浙江考生

高考文科数学内容如下:

1、忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

2、判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

3、函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

4、函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

高中数学公式

1、十倍角公式

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

2、万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

3、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

2010湖南高考文科数学试题

设函数f(x)=e^x+2x;则f(x)在(0,+∞)上是增函数,

所以f(a)=e^a+2a,f(b)=e^b+2b;

由A知:f(a)=f(b)+b;即f(a)-f(b)=b>0;

所以f(a)>f(b);所以选A。

同样设g(x)=e^x-2x,g?'(x)=e^x-2在x>0时的符号不定,所以D,和C无法判断正误

2010年普通高等学校招生全国统一考试(湖南卷)数学(文史类)

_____班 姓名_________

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.复数 等于 ( )

A. B. C. -1+i D. -1-i

2. 下列命题中的假命题是 ( )

A. B. C. D.

3.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是 ( )

A. B. C. D..

4.极坐标方程 和参数方程 (t为参数)所表示的图形分别是 ( )

A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线

5.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是 ( )

A. 4 B. 6 C. 8 D. 12

6.若非零向量 、 满足 , ,则 与 的夹角为 ( )

A.300 B. 600 C. 1200 D. 1500

7.在 中,角 的所对的边长分别为 ,若 ,则 ( )

A.a>b B. a<b C. a=b D. a与b 的大小关系不能确定.

8. 函数 与 在同一直角坐标系中的图象可能是 ( )

二 填空题:本大题共7个小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上。

9 .已知集合A={1,2,3},B={2, m,4},A∩B={2,3},则m= .

10.已知一种材料的最佳入量在100g到200g之间.若用0.618法安排试验,则第一次试点的加入量可以是 g.

11.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为

12 . 图1是求实数x的绝对值的算法程序框图,则判断框可填

13.图2中的三个直角三角形是 一个体积为20cm3的几何体的三视图,则 .

14. 若不同两点P,Q的坐标分别为(a,b) ,(3-b,3-a),则线段PQ的垂直平分线l的斜率为_________,圆 关于直线l对称的圆的方程为_________________________.

15. 若规定 的子集 为E的第k个子集,其中 ,则 (1) 是E的第_______个子集;

(2) E的第211个子集是________________.

三 解答题:每小题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤。

16.(本小题满分12分)已知函数 .

(Ⅰ)求函数 的最小正周期; (II)求函数 的最大值及 取最大值时x的集合。

高校 相关人数 抽取人数

A 18 x

B 36 2

C 54 y

17.(本小题满分12分)为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

(I)求x,y;

(II)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

18.(本小题满分12分) 如图3所示,在长方体ABCD- 中,AB=AD=1, AA1=2, M是棱C 的中点.

(Ⅰ)求异面直线 M和 所成的角的正切值;

(Ⅱ)证明:平面ABM 平面A1B1M.

19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4).考察范围为到A,B两点的距离之和不超过10km的区域。

(Ⅰ)求考察区域边界曲线的方程;

(Ⅱ)如图4所示,设线段P1P2是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,问:经过多长时间,点A恰好在冰川边界线上?

20 (本小题满分13分) 给出下面的数表序列:

表1 表2 表3 …

1 1 3 1 3 5

4 4 8

12

其中表n(n=1,2,3, …)有n行,第1行的n个数是1,3,5,…,2n-1,从第二行起,每行中的每个数都等于它肩上的两数之和.

(Ⅰ)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);

(Ⅱ)某个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{bn},求和:

.

21.(本小题满分13分)已知函数 , 其中 且

(Ⅰ)讨论函数 的单调性;

(Ⅱ)设函数 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.

2010年普通高等学校招生全国统一考试(湖南卷)

数学(文史类)参考答案

一、

题号 1 2 3 4 5 6 7 8

答案 A C A D B C A D

二、 9. 3 10. 161.8或138.2 11. 12.x>0或x>0? 或x≥0 或x≥0?

13. 4 14. -1 , x2+(y-1)2=1 15. 5;

三、16.解(Ⅰ) 因为

所以函数 的最小正周期

(II)由(Ⅰ)知,当 ,即 时, 取最大值 .

因此函数 取最大值时x的集合为

17解: (I)由题意可得 ,所以x=1,y=3

(II)记从高校B抽取的2人为b1,b2, 从高校C抽取的3人为c1,c2,c3,则从高校B、C抽取的5人中选2人作专题发言的基本事件有:

(b1,b2),(b1,c1), (b1,c2), (b1,c3), (b2,c1), (b2,c2), (b2,c3),( c1,c2), ( c1,c3), ( c2,c3)共10种.

设选中的2人都来自高校C的事件为X,则X包含的基本事件有( c1,c2), ( c1,c3), ( c2,c3)共3种.

因此 . 故选中的2人都来自高校C的概率为

18.解 Ⅰ)如图,因为 ,所以 异面

直线 M和 所成的角,因为 平面 ,

所以 ,而 =1, ,

故 .

即异面直线 M和 所成的角的正切值为

(Ⅱ)由 平面 ,BM 平面 ,得 BM ①

由(Ⅰ)知, , , ,所以 ,

从而BM B1M ② 又 , 再由① ②得BM 平面A1B1M,而BM 平面ABM,

因此平面ABM 平面A1B1M.

19. 解(Ⅰ)设边界曲线上点的坐标为P(x,y),则由|PA|+|PB|=10知,

点P在以A、B为焦点,长轴长为2a=10的椭圆上,此时短半轴

长 .所以考察区域边界曲线(如图)的方程

(Ⅱ)易知过点P1、P2的直线方程为4x-3y+47=0,

因此点A到直线P1P2的距离为

设经过n年,点A恰好在冰川边界线上,则利用等比数列求和公式可得

,解得 n=5. 即经过5年,点A恰好在冰川边界线上.

20. 解:(Ⅰ)表4为 1 3 5 7

4 8 12

12 20

32

它的第1,2,3,4行中的数的平均数分别为4,8,16,32. 它们构成首项为4,公比为2的等比数列.

将结这一论推广到表n(n≥3),即

表n各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.

(Ⅱ)表n第1行是1,3,5,…,2n-1,其平均数是

由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列(从而它的第k行中的数的平均数是 ),于是表n中最后一行的唯一一个数为 .因此

(k=1,2,3, …,n),故

21. (Ⅰ) 的定义域为 ,

(1)若-1<a<0,则当0<x<-a时, ;当-a <x<1时, ;当x>1时, .故 分别在 上单调递增,在 上单调递减.

(2)若a<-1,仿(1)可得 分别在 上单调递增,在 上单调递减.

(Ⅱ)存在a,使g(x)在[a,-a]上是减函数.

事实上,设 ,则

,再设 ,则当g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递,所以 ,由于 ,因此 ,而 ,所以 ,此时,显然有g(x)在[a,-a]上为减函数,当且仅当 在[1,-a]上为减函数,h(x)在[a,1上为减函数,且 ,由(Ⅰ)知,当a<-2时, 在 上为减函数 ①

又 ②

不难知道,

因 ,令 ,则x=a或x=-2,而

于是 (1)当a<-2时,若a <x<-2,则 ,若-2 <x<1,则 ,因而 分别在 上单调递增,在 上单调递减;

(2)当a=-2时, , 在 上单调递减.

综合(1)(2)知,当 时, 在 上的最大值为 ,所以, ③

又对 ,只有当a=-2时在x=-2取得,亦即 只有当a=-2时在x=-2取得.

因此,当 时,h(x)在[a,1上为减函数,从而由①,②,③知

综上所述,存在a,使g(x)在[a,-a]上是减函数,且a的取值范围为 .

文章标签: # 函数 # 不等式 # 高考