您现在的位置是: 首页 > 教育研究 教育研究

有关函数的高考题-函数高考热点

tamoadmin 2024-09-03 人已围观

简介1.关于高一必修一的重点函数题型2.如何学好函数关于高一必修一的重点函数题型函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。因此备受命题者的青睐,在近几

1.关于高一必修一的重点函数题型

2.如何学好函数

关于高一必修一的重点函数题型

有关函数的高考题-函数高考热点

函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。因此备受命题者的青睐,在近几年的高考试题中不断地出现。然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。下面通过例题来探讨这类问题的求解策略。

例:设y=f(x)是定义在区间〔-1,1〕上的函数,且满足条件:

(i)f(-1)=f(1)=0;

(ii)对任意的u,v∈〔-1,1〕,都有—f(u)-f(v)—≤—u-v—。

(Ⅰ)证明:对任意的x∈〔-1,1〕,都有x-1≤f(x)≤1-x;

(Ⅱ)证明:对任意的u,v∈〔-1,1〕,都有—f(u)-f(v)—≤1。

解题:

(Ⅰ)证明:由题设条件可知,当x∈〔-1,1〕时,有f(x)=f(x)-f(1)≤—x-1—=1-x,即x-1≤f(x)≤1-x.

(Ⅱ)证明:对任意的u,v∈〔-1,1〕,当—u-v—≤1时,有—f(u)-f(v)—≤1

当—u-v—>1,u·v<0,不妨设u<0,则v>0且v-u>1,其中v∈(0,1〕,u∈〔-1,0)

要想使已知条件起到作用,须在〔-1,0)上取一点,使之与u配合以利用已知条件,结合f(-1)=f(1)=0知,这个点可选-1。同理,须在(0,1〕上取点1,使之与v配合以利用已知条件。所以,—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—≤—u+1—+—v-1—=1+u+1-v=2-(v-u)<1

综上可知,对任意的u,v∈〔-1,1〕都有—f(u)-f(v)—≤1.

点评:有关抽象函数问题中往往会给出函数所满足的等式或不等式,因此在解决有关问题时,首先应对所要证明或求解的式子作结构上的变化,使所要证明或求解的问题的结构与已知的相同。如本题未给出函数y=f(x)的解析表达式,而给出了一组特定的对应关系f(-1)=f(1)=0,以及两个变量之差的绝对值不小于对应的函数值之差的绝对值的一般关系。在(1)的证明中,利用f(1)=0,把f(x)改写成—f(x)—=—f(x)-f(1)—;在(2)的证明中,利用f(-1)=f(1)=0,把—f(u)-f(v)—改写成—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—,这些变形起了重要的作用,因为是这些变化创造了使用条件的机会,也创造了解决问题的捷径。

另外,有关抽象函数问题中所给的函数性质往往是对定义域内的一切实数都成立的,因此根据题意,将一般问题特殊化,选取适当的特值(如令x=1,y=0等),这是解决有关抽象函数问题的非常重要的策略之一。

总之,抽象函数问题求解,用常规方法一般很难奏效,但我们如果能通过对题目的信息分析与研究,用特殊的方法和手段求解,往往会收到事半功倍之功效,同时在运用这些策略时要做到密切配合,相得益彰。

如何学好函数

你好:

学好函数要把握以下四点:

 (一)准确、深刻理解函数的有关概念 概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终.数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数.近十年来,高考试题中始终贯穿着函数及其性质这条主线.

(二)揭示并认识函数与其他数学知识的内在联系.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容.在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式. 所谓函数观点,实质是将问题放到动态背景上去加以考虑.高考试题涉及5个方面:(1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)函数法;(5)集合与映射,作为基本语言和工具出现在试题中.

(三)把握数形结合的特征和方法 函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换

.  (四)认识函数思想的实质,强化应用意识 函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决.纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识.

祝学习进步O(∩_∩)O

文章标签: # 函数 # 问题 # 性质