您现在的位置是: 首页 > 教育政策 教育政策
高考数学答案卷三,高考数学卷三答案解析
tamoadmin 2024-06-13 人已围观
简介1.2011山东卷高考数学选择题答案解析2.高考数学备考攻略3.2023高考数学答案什么时候出来4.求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接5.2023高考数学什么时候出答案6.有关数学高考题 多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数
1.2011山东卷高考数学选择题答案解析
2.高考数学备考攻略
3.2023高考数学答案什么时候出来
4.求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接
5.2023高考数学什么时候出答案
6.有关数学高考题
多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数学试卷及答案解析2022年。希望可以帮助大家。
北京卷高考数学试卷
北京卷高考数学答案解析
高中数学知识汇总
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)
理科:选修2—1、2—2、2—3
选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分 (一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
推理证明
一般高考大题分布
1、17题:三角函数
2、18、19、20 三题:立体几何 、概率 、数列
3、21、22 题:函数、圆锥曲线
成绩不理想一般是以下几种情况:
做题不细心,(会做,做不对)
基础知识没有掌握
解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)
心理素质不好
总之学__数学一定要掌握科学的学__方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳 总结
北京卷高考数学试卷及答案解析2022年相关 文章 :
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022年全国新高考II卷数学真题及答案
★ 2022高考全国乙卷试题及答案(理科)
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022年新高考Ⅱ卷数学试题及答案解析
★ 2022年新高考Ⅰ卷数学真题试卷及答案
★ 2022高考甲卷数学真题试卷及答案
★ 2022高考全国甲卷文综试题及答案一览
★ 2022高考全国甲卷数学试题及答案
★ 全国新高考II卷2022英语试题及答案解析
2011山东卷高考数学选择题答案解析
2023年高考数学试卷很难。
2023年高考数学全面贯彻党的教育方针,促进学生德智体美劳全面发展;反映新时代基础教育课程理念,落实考试评价改革、高中育人方式改革等相关要求,全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析的核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥数学科在人才选拔中的重要作用。
2023高考数学的作用:
2023年高考数学全国卷充分发挥基础学科的作用,突出素养和能力考查,甄别思维品质、展现思维过程,给考生搭就了展示的舞台、发挥的空间,致力于服务人才自主培养质量提升和现代化建设人才选拔。
1、重点考查逻辑推理素养,如新课标Ⅰ卷第7题以等差数列为材料考查充要条件的推证,要求考生判别充分性和必要性,然后分别进行证明,解决问题的关键是利用等差数列的概念和特点进行推理论证。
新课标Ⅱ卷第11题,其本质是根据一元二次方程根的性质判定方程系数之间的关系,题中函数经过求导以后,其既有极大值又有极小值的性质可以转化为一元二次方程有两个正根。全国乙卷理科第21题要求考生根据参数的性质进行分类推理讨论,考查了思维的条理性、严谨性。
2、深入考查直观想象素养,如全国甲卷理科第15题要求通过想象与简单计算确定球面与正方体棱的公共点的个数。全国乙卷理科第19题以几何体为依托,考查空间线面关系。新课标Ⅱ卷第9题以多选题的形式考查圆锥的内容,题目全面考查基础,四个选项设问逐次递进,前面的选项为后面的选项提供了条件,各选项分别考查圆锥的不同性质,互相联系,重点突出。
3、扎实考查数学运算素养,要求考生理解运算对象,掌握运算法则,探究运算思路,求得运算结果。如新课标Ⅰ卷第17题以正弦定理、同角三角函数基本关系式、解三角形等数学内容,考查数学运算素养。新课标Ⅱ卷第10题设置了直线与抛物线相交的情境,通过直线方程与抛物线方程的联立考查计算能力
高考数学备考攻略
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的的四个选项中,只有一个项是符合题目要求的。
(1)设集合 , ,则
A. B. C. D.
解析: , ,答案应选A。
(2)复数 为虚数单位)在复平面内对应的点所在的象限为
A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析: 对应的点为 在第四象限,答案应选D.
(3)若点 在函数 的图象上,则 的值为
A. B. C. D.
解析: , , ,答案应选D.
(4)不等式 的解集是
A. B. C. D.
解析:当 时,原不等式可化为 ,解得 ;当 时,原不等式可化为 ,不成立;当 时,原不等式可化为 ,解得 .综上可知 ,或 ,答案应选D。
另解1:可以作出函数 的图象,令 可得 或 ,观察图像可得 ,或 可使 成立,答案应选D。
另解2:利用绝对值的几何意义, 表示实数轴上的点 到点 与 的距离之和,要使点 到点 与 的距离之和等于10,只需 或 ,于是当 ,或 可使 成立,答案应选D。
(5)对于函数 , ,“ 的图象关于 轴对称”是“ 是奇函数”的
A充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件
解析:若 是奇函数,则 的图象关于 轴对称;反之不成立,比如偶函数 ,满足 的图象关于 轴对称,但不一定是奇函数,答案应选B。
(6)若函数 在区间 上单调递增,在区间 上单调递减,则
A. B. C. D.
解析:函数 在区间 上单调递增,在区间 上单调递减,
则 ,即 ,答案应选C。
另解1:令 得函数 在 为增函数,同理可得函数 在 为减函数,则当 时符合题意,即 ,答案应选C。
另解2:由题意可知当 时,函数 取得极大值,则 ,即 ,即 ,结合选择项即可得答案应选C。
另解3:由题意可知当 时,函数 取得最大值,
则 , ,结合选择项即可得答案应选C。
(7)某产品的广告费用 与销售额 的统计数据如下表:
广告费用 (万元)
4 2 3 5
销售额 (万元)
49 26 39 54
根据上表可得回归方程 中的 为9.4,据此模型预报广告费用为6万元是销售额为
A.6 .6万元 B. 65.5万元 C. 67.7万元 D. 72.0万元
解析:由题意可知 ,则 ,答案应选B。
(8)已知双曲线 的两条渐近线均和圆 相切,且双曲线的右焦点为圆 的圆心,则该双曲线的方程为
A. B. C. D.
解析:圆 , 而 ,则 ,答案应选A。
(9)函数 的图象大致是
解析:函数 为奇函数,且 ,令 得 ,由于函数 为周期函数,而当 时, ,当 时, ,则答案应选C。
(10)已知 是 上最小正周期为2的周期函数,且当 时, ,则函数 的图象在区间 上与 轴的交点的个数为
A.6 B.7 C.8 D.9
解析:当 时 ,则 ,而 是 上最小正周期为2的周期函数,则 , ,答案应选B。
(11)右图是长和宽分别相等的两个矩形。给定三个命题:
①存在三棱柱,其正(主)视图、俯视图如右图;
②存在四棱柱,其正(主)视图、俯视图如右图;
③存在圆柱,其正(主)视图、俯视图如右图。
其中真,命题的个数是
A.3 B.2 C.1 D.0
解析:①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱,
让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面
是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真,
答案选A。
(12)设 是平面直角坐标系中两两不同的四点,若 ,
,且 ,则称 调和分割 ,已知平面上的点 调和分割点 ,则下面说法正确的是
A. C可能是线段AB的中点 B. D可能是线段AB的中点
C. C,D可能同时在线段AB上 D. C,D不可能同时在线段AB的延长线上
解析:根据题意可知 ,若C或D是线段AB的中点,则 ,或 ,矛盾;
若C,D可能同时在线段AB上,则 则 矛盾,若C,D同时在线段AB的延长线上,则 , ,故C,D不可能同时在线段AB的延长线上,答案选D。
2023高考数学答案什么时候出来
高考数学备考攻略,从分层次学习、问步骤要分、不要盲目刷题三个方面为大家详细讲解。
基础知识部分高考的数学题不可能全部考难的东西,80%还是考查基础知识部分。一句话基础的狠狠抓,多花时间,比较难的题目有针对性的训练,但不要把他们当成主要的任务,高考也是有舍有得。
分步骤解决问题数学改卷注重问题解决的过程性和逻辑性,一定要养成一个分步骤解决问题的习惯。某一道题可能需要三步或者五步才能把它解决掉,一般前两步可能会比较浅显,那么务必把这两点的分数得到。而后面几个步骤可能需要比较强的思维逻辑才能解出来,这种情况下,尽力而为就可以了,把能得到的分得到,得不到的也不强求。
不要盲目刷题数学就是靠训练,但不要盲目刷题。很多学生学数学普遍存在给自己定不好位置,被其它学生盲目带着学,看别人刷题也刷,疲于应付不说,根本就是不懂得消化。比较难的环节,如函数等确确实实需要孩子具有一定的逻辑思维能力,如果孩子这方面有所欠缺,我觉得也是走一步看一步,尽最大努力就可以了,不要过于悲观和强求。
求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接
2023高考数学答案一般会在考后一周内公布。
一般情况下,高考答案一般会在考后一周内公布。高考结束后,非官方机构会及时公布各科目的高考答案,但不一定准确。而准确的官方高考答案要晚几天才会公布。
数学试卷做题技巧:
1、审题要慢、做题要快
审题非常关键,不管是简单题还是难题,都需要对题目要求有非常透彻的了解。并且,因为前三道大题是中低档的题目,所以应该尽快的准确完成,以拿出更多的时间来给后面的难题。因为只有前面有了保障,攻克后面高档题的时候才会有更多的信心,也才会更加放得开。
2、灵活处理、有所取舍
数学题需要一步一步的进行推导,在某一个环节当中出现意外很正常,在这个时候,不能死钻牛角尖,而是要灵活处理。比如,可以先从中间的问题做起,进一步开拓思路;将上一个问题的结论作为下一个问题的条件。
2023全国各省市高考考试用卷:
1、高考全国甲卷:(3+文科综合/理科综合)
使用省份:云南、四川、广西、贵州、西藏。
高考试卷科目:语文、数学、外语、文综、理综。
2、高考全国乙卷:(3+文科综合/理科综合)
使用省份:山西、安徽、吉林、黑龙江、内蒙古、陕西、甘肃、青海、宁夏、新疆、江西、河南。
高考试卷科目:语文、数学、外语、文综、理综。
3、新高考全国Ⅰ卷:(3+1+2/3+3)
使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。
4、新高考全国Ⅱ卷:(3+1+2/3+3)
使用省份:辽宁、重庆、海南。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
5、自主命题卷:(3+3)
使用省份:天津、上海、北京。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
以上数据出自于高三网。
2023高考数学什么时候出答案
10年的
一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},AB={3},则实数a=______▲________
2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________
3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__
4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
5、设函数f(x)=x(ex+ae-x),xR,是偶函数,则实数a=_______▲_________
6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______
7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S1 n1 SS+2n S33 nn+1 否 输出S 结束 是
8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____
10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____
11、已知函数,则满足不等式的x的范围是____▲____
12、设实数x,y满足38,49,则的最大值是_____▲____
13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则__▲
14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=,则S的最小值是_______▲_______
二、解答题
15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形两条对角线的长(2)设实数t满足()=0,求t的值
16、(14分)如图,四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,AB‖DC,BCD=900(1)求证:PCBC(2)求点A到平面PBC的距离
17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角ABE=α,ADE=β(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大
18.(16分)在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右顶点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0,①设动点P满足,求点P的轨迹②设,求点T的坐标③设,求证:直线MN必过x轴上的一定点(其坐标与m无关)ABOF
19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.①求数列的通项公式(用表示)②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为
20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数①求证:函数具有性质②求函数的单调区间(2)已知函数具有性质,给定,,且,若||<||,求的取值范围
理科附加题21(从以下四个题中任选两个作答,每题10分)(1)几何证明选讲AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k0,kR,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值(3)参数方程与极坐标在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值(4)不等式证明选讲已知实数a,b0,求证:22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列(2)求生产4件甲产品所获得的利润不少于10万元的概率23、(10分)已知△ABC的三边长为有理数(1)求证cosA是有理数(2)对任意正整数n,求证cosnA也是有理数
有关数学高考题
2023高考试卷答案一般会在高考完的半个月进行公布
具体的以实时公布时间为准。非官方机构会及时公布各科目的高考答案,但不一定准确。
2023全国各省市高考都用什么卷
高考全国甲卷:(3+文科综合/理科综合);使用省份:云南、四川、广西、贵州、西藏
高考试卷科目:语文、数学、外语、文综、理综;高考全国乙卷:(3+文科综合/理科综合)
使用省份:山西、安徽、吉林、黑龙江、内蒙古、陕西、甘肃、青海、宁夏、新疆、江.西、河南
高考试卷科目:语文、数学、外语、文综、理综
新高考全国Ⅰ卷:(3+1+2/3+3)
使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等
新高考全国I卷:(3+1+2/3+3)
使用省份:辽宁、重庆、海南
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
自主命题卷:(3+3)
使用省份:天津、上海、北京
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
高考试卷为什么各省不一样
1、不同省份使用的教材存在差异
受限于历史原因,原先不同省份之间使用的高中教材,存在一些差异。
教材不一样,必然造成内容编排、知识要点存在差异,从出题角度来说,考察重点也会有所差异,所以使用同一张试卷考试,既不科学又不公平。
2、不同省份之间的教育水平存在差异
即使是使用全国卷的地区,国家也作了区分。高考是个选拔性考试,如何有效区分出不司层次的学生,让他们分别去到对应的高校,是必须考虑的。
1. (05年广东卷)已知数列 满足 , , ….若 ,则(B)
(A) (B)3(C)4(D)5
2. (05年福建卷)3.已知等差数列 中, 的值是 ( A )
A.15 B.30 C.31 D.64
3. (05年湖南卷)已知数列 满足 ,则 = (B )
A.0 B. C. D.
4. (05年湖南卷)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
= (C)
A.2 B. C.1 D.
5. (05年湖南卷)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=(C)
A.sinx B.-sinx C.cosx D.-cosx
6. (05年江苏卷)在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=(C )
( A ) 33 ( B ) 72 ( C ) 84 ( D )189
7. (05年全国卷II) 如果数列 是等差数列,则(B )
(A) (B) (C) (D)
8. (05年全国卷II) 11如果 为各项都大于零的等差数列,公差 ,则(B)
(A) (B) (C) (D)
9. (05年山东卷) 是首项 =1,公差为 =3的等差数列,如果 =2005,则序号 等于(C )
(A)667 (B)668 (C)669 (D)670
10. (05年上海)16.用n个不同的实数a1,a2,┄an可得n!个不同的排列,每个排列为一行写成 1 2 3
一个n!行的数阵.对第i行ai1,ai2,┄ain,记bi=- ai1+2ai2-3 ai3+┄+(-1)nnain, 1 3 2
i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3
是12,所以,b1+b2+┄+b6=-12+2 12-3 12=-24.那么,在用1,2,3,4,5形成 2 3 1
的数阵中, b1+b2+┄+b120等于 3 1 2
3 2 1
[答]( C )
(A)-3600 (B) 1800 (C)-1080 (D)-720
11. (05年浙江卷) =( C )
(A) 2 (B) 4 (C) (D)0
12. (05年重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( C)
(A) 4;
(B) 5;
(C) 6;
(D) 7。
13、(04年浙江文理(3)) 已知等差数列 的公差为2,若 成等比数列, 则 =
(A) –4 (B) –6 (C) –8 (D) –10
14、(04年全国卷四文理6).等差数列 中, ,则此数列前20项和等于
A.160 B.180 C.200 D.220
15、(04年全国三文(4))等比数列 中 ,则 的前4项和为
A. 81 B. 120 C. 125 D. 192
16、(04年天津卷理8.) 已知数列 ,那么“对任意的 ,点 都在直线 上”是“ 为等差数列”的
A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件
17、(04年全国卷三理⑶)设数列 是等差数列, ,Sn是数列 的前n项和,则( )
A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5
18.(2003天津文)5.等差数列 ( C )
A.48 B.49 C.50 D.51
19.(2001天津)若Sn是数列{an}的前n项和,且 则 是 ( B )
(A)等比数列,但不是等差数列 (B)等差数列,但不是等比数列
(C)等差数列,而且也是等比数列 (D)既非等比数列又非等差数列
20、(04年湖北卷理8文9).已知数列{ }的前n项和 其中a、b是非零常数,则存在数列{ }、{ }使得( )
A. 为等差数列,{ }为等比数列
B. 和{ }都为等差数列
C. 为等差数列,{ }都为等比数列
D. 和{ }都为等比数列
21、(04年重庆卷理9). 若数列 是等差数列,首项 ,则使前n项和 成立的最大自然数n是:( )
A 4005 B 4006 C 4007 D 4008
二、填空题
1、(05年广东卷)
设平面内有n条直线 ,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用 表示这n条直线交点的个数,则 _____5________;当n>4时, =__ ___________.
2、. (05年北京卷)已知n次多项式 ,
如果在一种算法中,计算 (k=2,3,4,…,n)的值需要k-1次乘法,计算 的值共需要9次运算(6次乘法,3次加法),那么计算 的值共需要 n(n+3) 次运算.
下面给出一种减少运算次数的算法: (k=0, 1,2,…,n-1).利用该算法,计算 的值共需要6次运算,计算 的
值共需要 2n 次运算.
3. (05年湖北卷)设等比数列 的公比为q,前n项和为S?n,若Sn+1,S?n,Sn+2成等差数列,则q的值为 -2 .
4. (05年全国卷II) 在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______216 __.
5. (05年山东卷)
6. (05年上海)12、用 个不同的实数 可得到 个不同的排列,每个排列为一行写成一个 行的数阵。对第 行 ,记 , 。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以, ,那么,在用1,2,3,4,5形成的数阵中, =_-1080_________。
7、计算: =_3 _________。
8. (05年天津卷)设 ,则
9、 (05年天津卷)在数列{an}中, a1=1, a2=2,且 ,
则 =_2600_ ___.
10. (05年重庆卷) = -3 .
11、(04年上海卷理12) 若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S1与S2; ②a2与S3; ③a1与an; ④q与an.其中n为大于1的整数, Sn为{an}的前n项和.(①、④)
12(04年江苏卷15).设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是__2
13(04年北京文理(14))定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列 是等和数列,且 ,公和为5,那么 的值为___,且(文:这个数列的前21项和 的值为_____)(理:这个数列的前n项和 的计算公式为__( 3 ;(文:52)理:当n为偶数时, ;当n为奇数时, )
三、解答题
1.(05年北京卷)
设数列{an}的首项a1=a≠ ,且 ,
记 ,n==l,2,3,…?.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 .
解:(I)a2=a1+ =a+ ,a3= a2= a+ ;
(II)∵ a4=a3+ = a+ , 所以a5= a4= a+ ,
所以b1=a1- =a- , b2=a3- = (a- ), b3=a5- = (a- ),
猜想:{bn}是公比为 的等比数列?
证明如下:
因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn, (n∈N*)
所以{bn}是首项为a- , 公比为 的等比数列?
(III) .
2.(05年北京卷)数列{an}的前n项和为Sn,且a1=1, ,n=1,2,3,……,求
(I)a2,a3,a4的值及数列{an}的通项公式;
(II) 的值.
解:(I)由a1=1, ,n=1,2,3,……,得
, , ,
由 (n≥2),得 (n≥2),
又a2= ,所以an= (n≥2),
∴ 数列{an}的通项公式为 ;
(II)由(I)可知 是首项为 ,公比为 项数为n的等比数列,∴ =
3.(05年福建卷)
已知{ }是公比为q的等比数列,且 成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{ }是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
解:(Ⅰ)由题设
(Ⅱ)若
当 故
若
当
故对于
4. (05年福建卷)已知数列{an}满足a1=a, an+1=1+ 我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:
(Ⅰ)求当a为何值时a4=0;
(Ⅱ)设数列{bn?}满足b1=-1, bn+1= ,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};
(Ⅲ)若 ,求a的取值范围.
(I)解法一:
故a取数列{bn}中的任一个数,都可以得到一个有穷数列{an}
5. (05年湖北卷)设数列 的前n项和为Sn=2n2, 为等比数列,且
(Ⅰ)求数列 和 的通项公式;
(Ⅱ)设 ,求数列 的前n项和Tn.
解:(1):当
故{an}的通项公式为 的等差数列.
设{bn}的通项公式为
故
(II)
两式相减得
6. (05年湖北卷)已知不等式 为大于2的整数, 表示不超过 的最大整数. 设数列 的各项为正,且满足
(Ⅰ)证明
(Ⅱ)猜测数列 是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当 时,对任意b>0,都有
解:(Ⅰ)证法1:∵当
即
于是有
所有不等式两边相加可得
由已知不等式知,当n≥3时有,
∵
证法2:设 ,首先利用数学归纳法证不等式
(i)当n=3时, 由
知不等式成立.
(ii)假设当n=k(k≥3)时,不等式成立,即
则
即当n=k+1时,不等式也成立.
由(i)、(ii)知,
又由已知不等式得
(Ⅱ)有极限,且
(Ⅲ)∵
则有
故取N=1024,可使当n>N时,都有
7. (05年湖南卷)已知数列 为等差数列,且
(Ⅰ)求数列 的通项公式;
(Ⅱ)证明
(I)解:设等差数列 的公差为d.
由 即d=1.
所以 即
(II)证明因为 ,
所以
8. (05年湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不
要求证明)
(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的
最大允许值是多少?证明你的结论.
解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
(II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得
因为x1>0,所以a>b.
猜测:当且仅当a>b,且 时,每年年初鱼群的总量保持不变.
(Ⅲ)若b的值使得xn>0,n∈N*
由xn+1=xn(3-b-xn), n∈N*, 知
0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.
而x1∈(0, 2),所以
由此猜测b的最大允许值是1.
下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*
①当n=1时,结论显然成立.
②假设当n=k时结论成立,即xk∈(0, 2),
则当n=k+1时,xk+1=xk(2-xk?)>0.
又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,
所以xk+1∈(0, 2),故当n=k+1时结论也成立.
由①、②可知,对于任意的n∈N*,都有xn∈(0,2).
综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.
9. (05年江苏卷)设数列{an}的前项和为 ,已知a1=1, a2=6, a3=11,且 , 其中A,B为常数.
(Ⅰ)求A与B的值;
(Ⅱ)证明数列{an}为等差数列;
(Ⅲ)证明不等式 .
解:(Ⅰ)由 , , ,得 , , .
把 分别代入 ,得
解得, , .
(Ⅱ)由(Ⅰ)知, ,即
, ①
又 . ②
②-①得, ,
即 . ③
又 . ④
④-③得, ,
∴ ,
∴ ,又 ,
因此,数列 是首项为1,公差为5的等差数列.
(Ⅲ)由(Ⅱ)知, .考虑
.
.
∴ .
即 ,∴ .
因此, .
10. (05年辽宁卷)已知函数 设数列 }满足 ,数列 }满足
(Ⅰ)用数学归纳法证明 ;
(Ⅱ)证明
解:(Ⅰ)证明:当 因为a1=1,
所以 ………………2分
下面用数学归纳法证明不等式
(1)当n=1时,b1= ,不等式成立,
(2)假设当n=k时,不等式成立,即
那么 ………………6分
所以,当n=k+1时,不等也成立。
根据(1)和(2),可知不等式对任意n∈N*都成立。 …………8分
(Ⅱ)证明:由(Ⅰ)知,
所以
…………10分
故对任意 ………………(12分)
11. (05年全国卷Ⅰ) 设正项等比数列 的首项 ,前n项和为 ,且 。
(Ⅰ)求 的通项;
(Ⅱ)求 的前n项和 。
解:(Ⅰ)由 得
即
可得
因为 ,所以 解得 ,因而
(Ⅱ)因为 是首项 、公比 的等比数列,故
则数列 的前n项和
前两式相减,得
即
12. (05年全国卷Ⅰ)
设等比数列 的公比为 ,前n项和 。
(Ⅰ)求 的取值范围;
(Ⅱ)设 ,记 的前n项和为 ,试比较 与 的大小。
解:(Ⅰ)因为 是等比数列,
当
上式等价于不等式组: ①
或 ②
解①式得q>1;解②,由于n可为奇数、可为偶数,得-1<q<1.
综上,q的取值范围是
(Ⅱ)由 得
于是
又∵ >0且-1< <0或 >0
当 或 时 即
当 且 ≠0时, 即
当 或 =2时, 即
13. (05年全国卷II) 已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果数列 前3项的和等于 ,求数列 的首项 和公差 .
(I)证明:∵ 、 、 成等差数列
∴2 = + ,即
又设等差数列 的公差为 ,则( - ) = ( -3 )
这样 ,从而 ( - )=0
∵ ≠0
∴ = ≠0
∴
∴ 是首项为 = ,公比为 的等比数列。
(II)解。∵
∴ =3
∴ = =3
14.( 05年全国卷II)
已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果无穷等比数列 各项的和 ,求数列 的首项 和公差 .
(注:无穷数列各项的和即当 时数列前 项和的极限)
解:(Ⅰ)设数列{an}的公差为d,依题意,由 得
即 ,得 因
当 =0时,{an}为正的常数列 就有
当 = 时, ,就有
于是数列{ }是公比为1或 的等比数列
(Ⅱ)如果无穷等比数列 的公比 =1,则当 →∞时其前 项和的极限不存在。
因而 = ≠0,这时公比 = ,
这样 的前 项和为
则S=
由 ,得公差 =3,首项 = =3
15. (05年全国卷III)
在等差数列 中,公差 的等差中项.
已知数列 成等比数列,求数列 的通项
解:由题意得: ……………1分
即 …………3分
又 …………4分
又 成等比数列,
∴该数列的公比为 ,………6分
所以 ………8分
又 ……………………………………10分
所以数列 的通项为 ……………………………12分
16. (05年山东卷)
已知数列 的首项 前 项和为 ,且
(I)证明数列 是等比数列;
(II)令 ,求函数 在点 处的导数 并比较 与 的大小.
解:由已知 可得 两式相减得
即 从而 当 时 所以 又 所以 从而
故总有 , 又 从而 即数列 是等比数列;
(II)由(I)知
因为 所以
从而 =
= - =
由上 - =
=12 ①
当 时,①式=0所以 ;
当 时,①式=-12 所以
当 时, 又
所以 即① 从而
17.(05年上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.
假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
[解](1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,
其中a1=250,d=50,则Sn=250n+ =25n2+225n,
令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数, ∴n≥10.
到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.
(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,
其中b1=400,q=1.08,则bn=400?(1.08)n-1?0.85.
由题意可知an>0.85 bn,有250+(n-1)?50>400?(1.08)n-1?0.85.
由计箅器解得满足上述不等式的最小正整数n=6.
到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.
18. (05年天津卷)
已知 .
(Ⅰ)当 时,求数列 的前n项和 ;
(Ⅱ)求 .
(18)解:(Ⅰ)当 时, .这时数列 的前 项和
. ①
①式两边同乘以 ,得 ②
①式减去②式,得
若 ,
,
若 ,
(Ⅱ)由(Ⅰ),当 时, ,则 .
当 时,
此时, .
若 , .
若 , .
19. (05年天津卷)若公比为c的等比数列{ }的首项 =1且满足: ( =3,4,…)。
(I)求c的值。
(II)求数列{ }的前 项和 。
20. (05年浙江卷)已知实数a,b,c成等差数列,a+1,了+1,c+4成等比数列,求a,b,c.
解:由题意,得 由(1)(2)两式,解得
将 代入(3),整理得
解得 或
故 , 或
经验算,上述两组数符合题意。
21(05年浙江卷)设点 ( ,0), 和抛物线 :y=x2+an x+bn(n∈N*),其中an=-2-4n- , 由以下方法得到:
x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点 在抛物线 :y=x2+an x+bn上,点 ( ,0)到 的距离是 到 上点的最短距离.
(Ⅰ)求x2及C1的方程.
(Ⅱ)证明{ }是等差数列.
解:(I)由题意,得 。
设点 是 上任意一点,则
令 则
由题意,得 即
又 在 上,
解得
故 方程为
(II)设点 是 上任意一点,则
令 ,则 .
由题意得g ,即
又
即 (*)
下面用数学归纳法证明
①当n=1时, 等式成立。
②假设当n=k时,等式成立,即
则当 时,由(*)知
又
即当 时,等式成立。
由①②知,等式对 成立。
是等差数列。
22. (05年重庆卷)数列{an}满足a1?1且8an?1?16an?1?2an?5?0 (n?1)。记 (n?1)。
(1) 求b1、b2、b3、b4的值;
(2) 求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
解法一:
(I)
(II)因 ,
故猜想
因 ,(否则将 代入递推公式会导致矛盾)。
∵
故 的等比数列.
,
解法二:
(Ⅰ)由
整理得
(Ⅱ)由
所以
故
由 得
故
解法三:
(Ⅰ)同解法一
(Ⅱ)
从而
故
23. (05年重庆卷)数列{an}满足 .
(Ⅰ)用数学归纳法证明: ;
(Ⅱ)已知不等式 ,其中无理数e=2.71828….
(Ⅰ)证明:(1)当n=2时, ,不等式成立.
(2)假设当 时不等式成立,即
那么 . 这就是说,当 时不等式成立.
根据(1)、(2)可知: 成立.
(Ⅱ)证法一:
由递推公式及(Ⅰ)的结论有
两边取对数并利用已知不等式得
故
上式从1到 求和可得
即
(Ⅱ)证法二:
由数学归纳法易证 成立,故
令
取对数并利用已知不等式得
上式从2到n求和得
因
故 成立
24. (05年江西卷)已知数列{an}的前n项和Sn满足Sn-Sn-2=3 求数列{an}的通项公式.
解:方法一:先考虑偶数项有:
………
同理考虑奇数项有:
………
综合可得
方法二:因为
两边同乘以 ,可得:
令
所以
………
又
∴
∴
25. (05年江西卷)
已知数列
(1)证明
(2)求数列 的通项公式an.
解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
26、(04年全国卷四文18).已知数列{ }为等比数列, (Ⅰ)求数列{ }的通项公式;
(Ⅱ)设 是数列{ }的前 项和,证明
解:(I)设等比数列{an}的公比为q,则a2=a1q, a5=a1q4. 依题意,得方程组a1q=6, a1q4=162.解此方程组,得a1=2, q=3.故数列{an}的通项公式为an=2?3n-1
(II)
27、(04年全国三文⒆)设公差不为零的等差数列{an},Sn是数列{an}的前n项和,且 , ,求数列{an}的通项公式.
解:设数列{an}的公差为d(d≠0),首项为a1,由已知得: .解之得: , 或 (舍)
28(04年全国卷三理(22))已知数列{an}的前n项和Sn满足:Sn=2an +(-1)n,n≥1.⑴写出求数列{an}的前3项a1,a2,a3;
⑵求数列{an}的通项公式;⑶证明:对任意的整数m>4,有
解:⑴当n=1时,有:S1=a1=2a1+(-1) a1=1;当n=2时,有:S2=a1+a2=2a2+(-1)2 a2=0;
当n=3时,有:S3=a1+a2+a3=2a3+(-1)3 a3=2;综上可知a1=1,a2=0,a3=2;
⑵由已知得: ,化简得:
上式可化为: ,故数列{ }是以 为首项, 公比为2的等比数列.故 ∴
数列{ }的通项公式为:
⑶由已知得:
. 故 ,( m>4)
29、(04年天津卷文20. )设 是一个公差为 的等差数列,它的前10项和 且 , , 成等比数列。(1)证明 ;(2)求公差 的值和数列 的通项公式
证明:因 , , 成等比数列,故 ,而 是等差数列,有 ,
于是 ,即 ,化简得
(2)解:由条件 和 ,得到 ,由(1), ,代入上式得 ,故 , ,
30(04年浙江卷文(17))、已知数列 的前n项和为 (Ⅰ)求 ;(Ⅱ)求证数列 是等比数列
解: (Ⅰ)由 ,得 ,∴ ,又 ,即 ,得 .(Ⅱ)当n>1时, 得 所以 是首项 ,公比为 的等比数列
31(04年广东卷17). 已知 成公比为2的等比数列( 也成等比数列. 求 的值
解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α,∵sinα,sinβ,sinγ成等比数列
当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,
32(04年湖南文20). 已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4 成等差数列.(I)证明 12S3,S6,S12-S6成等比数列;(II)求和Tn=a1+2a4+3a7+…+na3n
(Ⅰ)证明 由 成等差数列, 得 ,即 变形得 所以 (舍去).由
得
所以12S3,S6,S12-S6成等比数列
(Ⅱ)解:
即 ①
①× 得:
所以
33、(04年江苏卷20).设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项 32 ,公差 ,求满足 的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立
解:(1) ;(2) 或 或
34(04年全国卷一理15).已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
( 答案 )
35(04年全国卷一理22).已知数列 ,且a2k=a2k-1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,…….
(I)求a3, a5;(II)求{ an}的通项公式
解:(I)a2=a1+(-1)1=0,a3=a2+31=3. a4=a3+(-1)2=4, a5=a4+32=13, 所以,a3=3,a5=13.
(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1,
……a3-a1=3+(-1).
所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],
由此得a2k+1-a1= (3k-1)+ [(-1)k-1],于是a2k+1=
a2k= a2k-1+(-1)k= (-1)k-1-1+(-1)k= (-1)k=1
{an}的通项公式为: 当n为奇数时,an?= 当n为偶数时,
36(04年全国卷一文17). 等差数列{ }的前n项和记为Sn.已知
(Ⅰ)求通项 ;(Ⅱ)若Sn=242,求n
解:(Ⅰ)由 得方程组 解得
所以 (Ⅱ)由 得方程
解得
37(04年全国卷二理(19))、数列{an}的前n项和记为Sn,已知a1=1,an+1= Sn(n=1,2,3,…)
证明:(Ⅰ)数列{ }是等比数列;(Ⅱ)Sn+1=4an
证(I)由a1=1,an+1= Sn(n=1,2,3,…),知a2= S1=3a1, , ,∴
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn= Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{ }是首项为1,公比为2的等比数列
证(II) 由(I)知, ,于是Sn+1=4(n+1)? =4an(n )
又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an
38(04年全国卷二文(17))、已知等差数列{an},a2=9,a5 =21
(Ⅰ)求{an}的通项公式;(Ⅱ)令bn= ,求数列{bn}的前n项和Sn
解:a5-a2=3d,d=4,an=a2+(n-2)d=9+4(n-2)=4n+1;{bn}是首项为32公比为16的等比数列,Sn= .