您现在的位置是: 首页 > 教育政策 教育政策
2015浙江高考理科数学,2015浙江数学文科高考
tamoadmin 2024-06-21 人已围观
简介1.理科高考总分是多少20152.浙江数学高考考什么卷3.浙江高考文科数学试卷第5.9.16三题怎么做求解题思路4.高考时文科的数学主要都考哪些内容高考数学备考攻略,让你轻松拿高分 有计划地放弃难题研究试卷,有计划地放弃难题,比如最后一个大题后两问,把150分的试卷变成120或130。 提高运算准确率考场上大脑一定要清醒,提高运算准确率,会做的题争取全拿满分,这样即使基础极差,也能拿80多分。
1.理科高考总分是多少2015
2.浙江数学高考考什么卷
3.浙江高考文科数学试卷第5.9.16三题怎么做求解题思路
4.高考时文科的数学主要都考哪些内容
高考数学备考攻略,让你轻松拿高分
有计划地放弃难题研究试卷,有计划地放弃难题,比如最后一个大题后两问,把150分的试卷变成120或130。
提高运算准确率考场上大脑一定要清醒,提高运算准确率,会做的题争取全拿满分,这样即使基础极差,也能拿80多分。
尽量抢分尽量抢分。比如立体几何题只要平时做得足够多,考场上肯花时间,都能拿满分;另外最后两大题的第一问也极简单,是送分题。这些分都可以抢到。
多做基础题努力还在平时,多做基础题,把基础搞透。
听老师的建议具体实施还要看你的情况,平时多和老师交流,多听他给你量身定做的建议,他最权威。
努力努力,或多或少,一定会有收获。
理科高考总分是多少2015
新高考全国Ⅰ卷。
2023年浙江高考时间是6月7日-10日,考试时间共4天,2023年浙江高考将继续沿用“新高考“3+3”模式”,此外,2023年浙江高考试卷使用“新高考全国Ⅰ卷”。
不分文理科,其中语文、数学、外语3门课为统考科目,然后在思想政治、历史、地理、物理、化学、生物、技术(含通用技术和信息技术)等7门设有加试题的高中学考科目中,选择3门作为高考选考科目。
全国各省市高考试卷类型
1、全国甲卷
云南、广西、贵州、四川、西藏共5个,其中这5个省份的语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
2、全国乙卷
河南、山西、江西、安徽、甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西共12个,其中全国乙卷的语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
3、新高考Ⅰ卷
广东、福建、江苏、湖南、湖北、河北、山东共7个,其中语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。至于广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。
4、新高考Ⅱ卷
辽宁、重庆、海南共3个;其中语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。而辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。
5、自主命题
北京市、上海市、天津市、浙江省共4个,而该4个地区的考生分别使用其自主命题的试卷,即:北京卷、上海卷、天津卷、浙江卷。
浙江数学高考考什么卷
理科高考总分各省不尽相同,2015年绝大多数省份使用全国卷,总分为750分,但还有部分省市使用地方卷,计分方式不尽相同;比如,?江苏省总分为480分,上海市总分660,而浙江省总分为750分,但考试方式与全国卷不一样。具体规定如下。
普通高等学校招生全国统一考试(The National College Entrance Examination )简称高考,是中华人民共和国(不包括香港、澳门、台湾)合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
一、全国卷“3+X”
应用地区:大部分省市区
“3”指“语文、数学、外语”,“X”指由指学生根据自己的意愿,自主从文科综合(涵盖政治、历史、地理)和理科综合(涵盖物理、化学、生物)2个综合科中选择一个考试科目。此方案是目前全国应用最广,最成熟的,最被人们接受的。总分750分(语文150分,数学150分,外语150分,文科综合/理科综合300分)。
二、江苏卷“3+学业水平测试+综合素质评价”
应用地区:江苏
经过教育部批准,从2008年起,江苏省实行“3+学业水平测试+综合素质评价”高考方案。其中,“3”指“语文、数学、外语”,语文160分(文科加考40分加试题)、数学160分(理科加考40分加试题)、外语120分,满分480分。学业水平测试必修科目考试含物理,化学,生物,政治,历史,地理,信息技术7科,各科原始满分为100分,考生需参加未选为学业水平测试选修科目的5门必修科目。学业水平测试选修科目考试含物理,化学,生物,政治,历史,地理6科,各科原始满分120分,文科考生必考历史,理科考生必考物理,再从化学,生物,政治,地理中选一门,普通类考生须全部达C等方可参加高考和选修科目测试。学业水平测试实行等级计分,分为4个:A、B、C、D。(此方案由于总分偏低,且选修科目不计入总分,造成分数段扁平密集,另外物理,化学科目不计入总分,造成理科人才选拔困难,因此该方案很受争议)。
三、上海卷“3+3”
必考科目:语文/数学/英语每科150分 其中英语一年两考,取最高分。物理,化学,生物,政治,历史,地理选3门,每科70分,按照A A+……比例给分。其中地理等级考在高二,2017年加试地理考试将于2016年5月7日参加地理等级考。总分660分。
四、浙江卷“3+3”
必考学科:语文150分,数学150分,外语150分。选考学科:政治、历史、地理、物理、化学、生物、技术,学生要选择3门作为高考选考科目。选考科目每年会安排2次考试,分别在4月和10月进行。每门总共安排3次统一考试,考生可自行决定参加时间,每门科目最多参加2次,选考科目成绩实行等级赋分,如成绩在前1%者赋分100分加入高考总成绩。总分750分。
浙江高考文科数学试卷第5.9.16三题怎么做求解题思路
浙江数学高考用的是全国一卷。
2023年浙江使用的是新高考全国一卷。统考科目包括语文、数学、外语,其中外语可在英、俄、日、法、德中任选一门,分为听力和笔试。
浙江高考分数:
高考总分值设置为750分。考生总分由全国统一高考的语文、数学、外语3门科目成绩和考生选择的3门学业水平选择性考试科目成绩组成。语文、数学、外语3门统考科目,每门150分,其中,外语科目含听力考试30分;各统考科目均以原始分计入考生总分。
3门选择性考试科目每门100分。其中,历史、物理以原始分计入总分,其余4门科目(思想政治、地理、化学、生物)以等级分计入总分。
全国高考一卷的省份:
2023年使用新高考一卷的省份:广东、福建、江苏、湖南、湖北、河北、山东、浙江。
2023年高考各地用卷情况:
1、新高考全国Ⅰ卷
使用地区:广东、福建、山东、河北、湖南、江苏、湖北、浙江。统考科目:语文、数学、外语(教育部命题)。自主命题科目:物理、历史、化学、地理、政治、生物、技术(仅为浙江选考科目)。
2、新高考全国Ⅱ卷
使用地区:重庆、辽宁、海南。统考科目:语文、数学、外语(教育部命题)。自主命题科目:物理、历史、化学、地理、政治、生物。
3、全国甲卷
使用地区:四川、云南、贵州、广西、西藏。考试科目:语文、文科数学/理科数学、文科综合/理科综合、外语(均为教育部命题)。
4、全国乙卷
使用地区:河南、安徽、江西、山西、黑龙江、吉林、陕西、甘肃、青海、宁夏、内蒙古、新疆。考试科目:语文、文科数学/理科数学、文科综合/理科综合、外语(均为教育部命题)。
高考时文科的数学主要都考哪些内容
5.acosA=bsinB sinAcosA=sinB的平方 sinB的平方加cosB的平方等于1.
9.有公共焦点 c=根号5 画图 设方程就可以了。
16.基本不等式 把X的平方 Y的平方和XY的关系 化出根号XY 代入方程 可以解出X+Y.
额 有点抽象 不知道能不能看懂。
高考时文科的数学主要考试内容如下:
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次是函数图象。
2.面对含有参数的初等函数来说,在研究的时候应该抓住参数有没有影响到函数的不变的性质。如所过的定点,二次函数的对称轴或是?; 如果产生了影响,应考虑分类讨论。
3.填空中出现不等式的题目(求最值、范围、比较大小等),优选特殊值法;
4.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
6.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式问题;
7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道
第3/4页
曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可(多观察图形,注意图形中的垂直、中点等隐含条件);个别题目考虑圆锥曲线的第二定义。
9.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
10、向量问题两条主线:转化为基底和建系,当题目中有明显的对称、垂直关系时,优先选择建系。
11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
12.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知(即有平方关系),可使用三角换元来完成;
13.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
14.与图象平移有关的,注意口诀“左加右减,上加下减”只用于函数
15.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,二是中点在对称轴上。