您现在的位置是: 首页 > 教育政策 教育政策

高考数学必考公式-高考数学必考公式数量

tamoadmin 2024-09-10 人已围观

简介1.高中必背数学公式2.高中数学公式大全 高考文科必背数学公式整理3.数学高考必考知识点有哪些?4.高考数学必考知识点:对数及对数函数5.高考必考的数学公式高中必背数学公式 高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。   高中必背数学公式:一元二次方程的解  -b+?(b2-4ac)/2a-b-?(b2-4a

1.高中必背数学公式

2.高中数学公式大全 高考文科必背数学公式整理

3.数学高考必考知识点有哪些?

4.高考数学必考知识点:对数及对数函数

5.高考必考的数学公式

高中必背数学公式

高考数学必考公式-高考数学必考公式数量

 高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。

  高中必背数学公式:一元二次方程的解

 -b+?(b2-4ac)/2a-b-?(b2-4ac)/2a

 根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理

 判别式b2-4a=0注:方程有相等的两实根

 b2-4ac>0注:方程有两个不相等的个实根

 b2-4ac<0注:方程有共轭复数根

高中必背数学公式:立体图形及平面图形的公式

 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

 抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

 直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h

 正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

 圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

 弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

 柱体体积公式V=s*h圆柱体V=pi*r2h

  高中必背数学公式:图形周长、面积、体积公式

 长方形的周长=(长+宽)?2

 正方形的周长=边长?4

 长方形的面积=长?宽

 正方形的面积=边长?边长

 三角形的面积

 已知三角形底a,,则S=ah/2

 已知三角形三边a,b,c,半周长p,则S=?[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

 和:(a+b+c)*(a+b-c)*1/4

 已知三角形两边a,b,这两边夹角C,则S=absinC/2

 设三角形三边分别为a、b、c,内切圆半径为r

 则三角形面积=(a+b+c)r/2

 设三角形三边分别为a、b、c,外接圆半径为r

 则三角形面积=abc/4r

高中数学公式大全 高考文科必背数学公式整理

为了方便大家更好地去背诵和记忆数学公式,我为大家整理了高中重点数学公式,供参考!

高中重点数学公式大全

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

高中文科数学必背公式总结

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

公式七:两角和差公式

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

公式八:二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

公式九:半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

公式十:万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

公式十一:三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

提高高中数学成绩的方法有哪些

1.主动预习

预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

2.主动思考

很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

3.善于总结规律

解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

① 本题最重要的特点是什么?

② 解本题用了哪些基本知识与基本图形?

③ 本题你是怎样观察、联想、变换来实现转化的?

④ 解本题用了哪些数学思想、方法?

⑤ 解本题最关键的一步在那里?

⑥ 你做过与本题类似的题目吗?在解法、思路上有什么异同?

⑦ 本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下用吗?

把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

4.拓宽解题思路

数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

5.必须要有错题本

说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

数学高考必考知识点有哪些?

数学高考必考知识点有:

1、常用名称和术语:坡角、仰角、俯角、方位角、方向角。

2、轨迹方程的相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

3、等比数列爆强公式:S(n+m)=S(m)+q2mS(n)。

4、三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

5、复合函数奇偶性:内偶则偶,内奇同外。

高考数学必考知识点:对数及对数函数

高考数学必考知识点:对数定义

 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。

 注:1.以10为底的对数叫做常用对数,并记为lg。

 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。

 3.零没有对数。

 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。

高考数学必考知识点:对数公式

  高考数学必考知识点:对数函数定义

 一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

 其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

高考数学必考知识点:对数函数性质

 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

 值域:实数集R,显然对数函数无界。

 定点:函数图像恒过定点(1,0)。

 单调性:a>1时,在定义域上为单调增函数;

 奇偶性:非奇非偶函数

 周期性:不是周期函数

 对称性:无

 最值:无

 零点:x=1

 注意:负数和0没有对数。

 两句经典话:底真同对数正,底真异对数负。解释如下:

 也就是说:若y=logab (其中a>0,a≠1,b>0)  

 当a>1,b>1时,y=logab>0;

 当0<a 1时,y=logab<0; </a

 当a>1,0<b<1时,y=logab<0。 p=""> </b<1时,y=logab<0。>

高考必考的数学公式

高考必考的数学公式如下:

1、三角函数公式: sin?θ + cos?θ = 1 tanθ = sinθ/cosθ。

2、角度制和弧度制之间的转换: 角度制 = 弧度制 × 180/π 弧度制 = 角度制 × π/180。

3、圆与圆周的关系: 圆的面积:S=πr? 圆的周长:C=2πr 弧长公式:L = θ/2π × 2πr = θr (其中θ是圆心角的弧度值)。

4、三角形面积公式: 面积公式:S = 1/2 × 底 × 高 海龙公式:S= √[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。

5、平面几何公式: 两点间距离公式:d = √[(x2-x1)?+(y2-y1)?] 中点公式:(X,Y)=((x1+x2)/2,(y1+y2)/2) 垂直平分线公式:Ax + By + C = 0 (其中A、B、C由中点(X,Y)和给定点(x1,y1)可计算得到)。

6、等差数列和等比数列公式: 等差数列通项公式:an = a1 + (n-1)d 等差数列前n项和公式:Sn = n/2(a1 + an) 等比数列通项公式:an = a1 × q^(n-1) 等比数列前n项和公式:Sn = (a1 × (1-q^n))/(1-q)。

注意事项

1、熟练运用基本概念和公式:高考数学试题通常涉及较多的公式和基本概念,考生需要熟练掌握并能够快速准确地应用。

2、熟悉图表的阅读及推断能力:数学高考试题涉及较多的图表和数据,考生需要具备熟悉和快速阅读、理解和推断数据的能力。

3、稳定心态,避免紧张和慌乱:数学高考试题较为复杂,需要考生在考场内保持稳定的心态,避免因紧张、慌乱等因素影响答题效果。

4、善于应用数学思维:数学高考试题往往涉及到一些抽象的问题,需要考生具备良好的数学思维和创新精神,善于从多个角度解决问题。

5、精细化答题思路和方法:数学高考试题解题过程中需要考生精细化思路和方法,想到什么就选什么、错了就改正、不偏不倚地回答试题。

文章标签: # 公式 # 面积 # 数学