您现在的位置是: 首页 > 招生信息 招生信息

高考数学模拟题和答案,高考数学模拟题及答案

tamoadmin 2024-06-14 人已围观

简介1.2022全国新高考Ⅱ卷文科数学试题及答案解析2.2022高考数学题及答案(2020高考数学题及答案解析)3.一些数学题。很急!快高考了!大家帮帮我4.高考理科数学题,求17题过程及答案5.2022全国乙卷理科数学试卷及答案解析试题与答案数学试题(文科)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.已知集合

1.2022全国新高考Ⅱ卷文科数学试题及答案解析

2.2022高考数学题及答案(2020高考数学题及答案解析)

3.一些数学题。很急!快高考了!大家帮帮我

4.高考理科数学题,求17题过程及答案

5.2022全国乙卷理科数学试卷及答案解析

高考数学模拟题和答案,高考数学模拟题及答案

试题与答案

数学试题(文科)

第Ⅰ卷 选择题(共50分)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)

1.已知集合 , ,则 =( A )

A. B.

C. D.

2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )

A.6 B.-2 C.4 D.-6

3.已知 ,则“ ”是“ ”的 ( B )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.已知点P(x,y)在不等式组 表示的平面区域上运动,

则z=x-y的取值范围是( )

A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]

5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )

A. B. C. D.

一年级 二年级 三年级

女生 373

男生 377 370

6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的

学生人数为( )

A.24 B.18 C.16 D.12

7.平面向量 =( )

A.1 B.2 C.3 D.

8.在等差数列 中,已知 ,那么 的值为( )

A.-30 B.15 C.-60 D.-15

9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )

A.①是真命题,②是假命题 B.①是假命题,②是真命题

C.①②都是真命题 D.①②都是假命题

10.已知一个几何体的三视图如所示,则该几何体的体积为( )

A.6 B.5.5

C.5 D.4.5

第Ⅱ卷 非选择题(共100分)

二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.

(一)必做题(11~14题)

11.已知 ,且 是第二象限的角,

则 ___________.

12.执行右边的程序框图,若 =12, 则输

出的 = ;

13.函数 若

则 的值为: ;

14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.

(二)选做题(15~17题,考生只能从中选做一题)

15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;

16.(选修4—5 不等式选讲)不等式 的解集是: ;

17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .

三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)

18.(本小题12分)

已知向量 , ,设 .

(1).求 的值;

(2).当 时,求函数 的值域。

19.(本小题12分)

已知函数 .

(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,

求方程 有两个不相等实根的概率;

(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.

20.(本小题12分)

在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.

(1)求证:BC⊥AD;

(2)求三棱锥C—AOD的体积.

21.(本小题12分)

已知数列 的前n项和为 , 且满足 ,

(1) 求 的值;

(2) 求证:数列 是等比数列;

(3) 若 , 求数列 的前n项和 .

22、(本小题13分)

已知函数 在点 处的切线方程为 .

(1)求 的值;

(2)求函数 的单调区间;

(3)求函数 的值域.

23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求直线AB的斜率;

(3)求△PAB面积的最大值.

文科数学参考答案与评分标准

一、选择题:

A卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案 A D A B D C B A D C

B卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案

二、填空题:

(一)必做题

11. ; 12.4.; 13.1或 ; 14. .

(二)选做题

15.相交;16. ;17. .

三、解答题:

18.解: =

=

= ……………………………………(4分)

(1)

= …………………………(8分)

(2)当 时, ,

∴ ………………………(12分)

19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素

∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),

(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.

设“方程 有两个不相等的实根”为事件A,

当 时方程 有两个不相等实根的充要条件为

当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)

即A包含的基本事件数为6.

∴方程 有两个不相等的实根的概率

……………………………………………………(6分)

(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数

则试验的全部结果构成区域

这是一个矩形区域,其面积

设“方程 没有实根”为事件B

则事件B构成的区域为

即图中阴影部分的梯形,其面积

由几何概型的概率计算公式可得方程 没有实根的概率

………………………………………………(12分)

20.解法一:(1)∵BOCD为正方形,

∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角

∴AO⊥BO ∵AO⊥CO 且BO∩CO=O

∴AO⊥平面BCO 又∵

∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO

∴BC⊥AD …………(6分)

(2) …………………………(12分)

21.解:(1)因为 ,令 , 解得 ……1分

再分别令 ,解得 ……………………………3分

(2)因为 ,

所以 ,

两个代数式相减得到 ……………………………5分

所以 ,

又因为 ,所以 构成首项为2, 公比为2的等比数列…7分

(3)因为 构成首项为2, 公比为2的等比数列

所以 ,所以 ……………………………8分

因为 ,所以

所以

因此 ……………………………11分

所以 ………………………12分

22.解:(1)

∵ 在点 处的切线方程为 .

∴ …………………………(5)

(2)由(1)知: ,

x

2

+ 0 — 0 +

极大

极小

∴ 的单调递增区间是: 和

的单调递减区间是: ………………………………(9)

(3)由(2)知:当x= -1时, 取最小值

当x= 2时, 取最大值

且当 时, ;又当x<0时, ,

所以 的值域为 ………………………………………(13)

23.解:(1) , ,设

则 ,

又 , ,∴ ,即所求 ……(5分)

(2)设 : 联立

得:

∵ ,∴ ,

同理 , ∴ ……(10分)

(3)设 : ,联立

,得: ,∴

∴|AB|=

∴S=

当且仅当m=±2时等号成立。…………………………………(14分)

2022全国新高考Ⅱ卷文科数学试题及答案解析

2009年普通高等学校招生全国统一考试(福建卷)

数学(理工农医类)

一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 函数 最小值是

A.-1 B. C. D.1

1.答案:B

[解析]∵ ∴ .故选B

2.已知全集U=R,集合 ,则 等于

A. { x ∣0 x 2} B { x ∣0<x<2}

C. { x ∣x<0或x>2} D { x ∣x 0或x 2}

2.答案:A

[解析]∵计算可得 或 ∴ .故选A

3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于

A.1 B C.- 2 D 3

3.答案:C

[解析]∵ 且 .故选C

4. 等于

A. B. 2 C. -2 D. +2

4.答案:D

[解析]∵ .故选D

5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >

的是

A. = B. = C . = D

5.答案:A

[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。

6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m

A.2 B .4 C. 8 D .16

6.答案:C

[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C

7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m

A.m // 且l // B. m // l 且n // l

C. m // 且n // D. m // 且n // l

7.答案:B

[解析]若 ,则可得 .若 则存在

8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动

员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,

指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为

A.0.35 B 0.25 C 0.20 D 0.15

8.答案:B

[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B

9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,

a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m

A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积

C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积

9.答案:C

[解析]依题意可得 故选C.

10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是

A. B C D

10. 答案:D

[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.

第二卷 (非选择题共100分)

二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。

11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m

11. 答案:2

解析:由 ,所以 故 。

12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________

12. 答案:1

解析:观察茎叶图,

可知有 。

13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m

13. 答案:2

解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。

14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.

14. 答案:

解析:由题意可知 ,又因为存在垂直于 轴的切线,

所以 。

15.五位同学围成一圈依序循环报数,规定:

①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;

②若报出的数为3的倍数,则报该数的同学需拍手一次

已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.

15. 答案:5

解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。

三解答题w.w.w.k.s.5.u.c.o.m

16.(13分)

从集合 的所有非空子集中,等可能地取出一个。

(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;

(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E

16、解:(1)记”所取出的非空子集满足性质r”为事件A

基本事件总数n= =31

事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}

事件A包含的基本事件数m=3

所以

(II)依题意, 的所有可能取值为1,2,3,4,5

又 , ,

故 的分布列为:

1 2 3 4 5

P

从而E +2 +3 +4 +5

17(13分)

如图,四边形ABCD是边长为1的正方形, ,

,且MD=NB=1,E为BC的中点

(1) 求异面直线NE与AM所成角的余弦值

(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m

17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标

依题意,得 。

所以异面直线 与 所成角的余弦值为 .A

(2)假设在线段 上存在点 ,使得 平面 .

,

可设

又 .

由 平面 ,得 即

故 ,此时 .

经检验,当 时, 平面 .

故线段 上存在点 ,使得 平面 ,此时 .

18、(本小题满分13分)

如图,某市拟在长为8km的道路OP的一侧修建一条运动

赛道,赛道的前一部分为曲线段OSM,该曲线段为函数

y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为

S(3,2 );赛道的后一部分为折线段MNP,为保证参赛

运动员的安全,限定 MNP=120

(I)求A , 的值和M,P两点间的距离;

(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m

18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,

解法一

(Ⅰ)依题意,有 , ,又 , 。

当 是,

(Ⅱ)在△MNP中∠MNP=120°,MP=5,

设∠PMN= ,则0°< <60°

由正弦定理得

,

0°< <60°, 当 =30°时,折线段赛道MNP最长

亦即,将∠PMN设计为30°时,折线段道MNP最长

解法二:

(Ⅰ)同解法一

(Ⅱ)在△MNP中,∠MNP=120°,MP=5,

由余弦定理得 ∠MNP=

从而 ,即

当且仅当 时,折线段道MNP最长

注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等

19、(本小题满分13分)

已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴

的左、右两个交点,直线 过点B,且与 轴垂直,S为 上

异于点B的一点,连结AS交曲线C于点T.

(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m

19.解析

解法一:

(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.

(1)当∠BOT=60°时, ∠SAE=30°.

又AB=2,故在△SAE中,有

(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,

(Ⅱ)假设存在 ,使得O,M,S三点共线.

由于点M在以SB为直线的圆上,故 .

显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .

设点

故 ,从而 .

亦即

由 得

由 ,可得 即

经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.

解法二:

(Ⅰ)同解法一.

(Ⅱ)假设存在a,使得O,M,S三点共线.

由于点M在以SO为直径的圆上,故 .

显然,直线AS的斜率k存在且K>0,可设直线AS的方程为

设点 ,则有

由 所直线SM的方程为

O,S,M三点共线当且仅当O在直线SM上,即 .

故存在 ,使得O,M,S三点共线.

20、(本小题满分14分)

已知函数 ,且 w.w.w.k.s.5.u.c.o.m

(1) 试用含 的代数式表示b,并求 的单调区间;

(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:

(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;

(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m

20.解法一:

(Ⅰ)依题意,得

由 .

从而

①当a>1时,

当x变化时, 与 的变化情况如下表:

x

+ - +

单调递增 单调递减 单调递增

由此得,函数 的单调增区间为 和 ,单调减区间为 。

②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R

③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为

综上:

当 时,函数 的单调增区间为 和 ,单调减区间为 ;

当 时,函数 的单调增区间为R;

当 时,函数 的单调增区间为 和 ,单调减区间为 .

(Ⅱ)由 得 令 得

由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。

观察 的图象,有如下现象:

①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。

②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;

③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;

线段MP的斜率Kmp

当Kmp- =0时,解得

直线MP的方程为

当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。

当 时, .

所以存在 使得

即当 MP与曲线 有异于M,P的公共点

综上,t的最小值为2.

(2)类似(1)于中的观察,可得m的取值范围为

解法二:

(1)同解法一.

(2)由 得 ,令 ,得

由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )

(Ⅰ) 直线MP的方程为

线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数

上有零点.

因为函数 为三次函数,所以 至多有三个零点,两个极值点.

又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.

等价于 即

又因为 ,所以m 的取值范围为(2,3)

从而满足题设条件的r的最小值为2.

21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,

(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m

已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数

(3)(本小题满分7分)选修4-5:不等式选讲

解不等式∣2x-1∣<∣x∣+1

21.

(1)解:依题意得

由 得 ,故

从而由 得

故 为所求.

(2)解:圆的方程可化为 .

其圆心为 ,半径为2.

(3)解:当x<0时,原不等式可化为

又 不存在;

当 时,原不等式可化为

综上,原不等式的解集为

2022高考数学题及答案(2020高考数学题及答案解析)

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

一些数学题。很急!快高考了!大家帮帮我

2022年全国乙卷高考数学试题答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关文章:

★2022高考全国乙卷试题及答案

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及答案

★2022年全国乙卷高考数学真题及答案

★2022年全国理科数学卷试题答案及解析

★2022全国Ⅰ卷高考数学试题及参考答案一览

★2022年英语全国乙卷试题及答案

★2022年高考乙卷数学真题试卷

2022年全国新高考1卷数学试题及答案解析

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题答案解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及答案解析相关文章:

★2022高考甲卷数学真题试卷及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022高考全国甲卷数学试题及答案

★2022高考数学大题题型总结

★2022全国乙卷理科数学真题及答案解析

★2022年全国乙卷高考数学试卷

★2022年新高考1卷语文真题及答案解析

★全国新高考一卷2022语文试题及答案一览

★2022江西高考文科数学试题及答案

★2022全国新高考II卷语文试题及答案解析

2022年全国新高考1卷数学试题及答案详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式

②根据具体问题中的数量关系列不等式并解决简单实际问题

③用数轴表示一元一次不等式的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

排列数的公式:Amn=n

特例:当m=n时,Amn=n!=n×3×2×1

规定:0!=1

二、组合

1定义

从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM

2.排列与组合

Anm=n-=n!/!Ann=n!

Cnm=n!/!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法

插空法间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

把具体问题转化或归结为排列或组合问题;

通过分析确定运用分类计数原理还是分步计数原理;

分析题目条件,避免“选取”时重复和遗漏;

列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn

特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考甲卷数学真题试卷及答案

★2022北京卷高考文科数学试题及答案解析

★2022高考全国甲卷数学试题及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022全国乙卷理科数学真题及答案解析

★2022高考数学大题题型总结

★2022年高考全国一卷作文预测及范文

★2022年高考数学必考知识点总结最新

★2022年全国乙卷高考数学试卷

2022年北京高考数学试题及参考答案

相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!

2022年北京高考数学试题

2022年北京高考数学试题参考答案

高考数学答题策略

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

一、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。

二、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。

三、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

四、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

2022年北京高考数学试题及参考答案相关文章:

★2022数学高考题及答案

★2022新高考数学Ⅰ卷试卷及参考答案

★2022年全国Ⅰ卷高考数学试题及参考答案公布

★2022全国一卷高考数学试题及答案

★2022新高考全国一卷数学试卷及答案解析

★2022年高考数学试题及答案

★2022全国新高考Ⅰ卷数学卷完整试题及答案一览

★2022新高考全国一卷数学试卷答案解析

★2022年高考数学全国乙卷试题答案

★2022新高考数学试题及答案详解

高考理科数学题,求17题过程及答案

1、“若直线L1:2x-5y+20=0和直线L2:mx+2y-10=0与俩坐标轴围成的四边形”当然是四边形。直线方程画出来就能知道的

2、平面向量是解决几何问题的工具,因此,你做平面向量题目要尽量作图。本题你的理解不对,你只分析K=0的情形当然会不理解为什么是那样的答案。事实上,本题画出图,然后把|OA+(k-1)OB-kOC|>|OA-OC|去掉无关点O变成|BA-kBC|>|CA|,此时结合图形就能看出:A与直线BC上点的连线中AC最短,因此,AC⊥BC,结论自可得出。

你先看着,我继续解答。

本题你用了一个词“坑蒙拐骗”,尽管不合适,可表达了你想得分的心情。其实,选择题重在“选”,因此经常不直接做,而是结合选择支利用“特值法”、“代入验证法”、“排除法”等只要能得到答案就好。

3、你对概率模型不是很清楚。这里一句话两句话说不清楚,给你个建议,拿出三个小时的时间,把基本问题弄清楚,再配以专门的练习题,这类题不难突破。因为分布列在高考中的题多属中档题,比较容易得分。希望这三个小时的时间能带给你12分的“利润”。

4、当然是零点判断定理。也就是考虑端点函数值是否异号,当然这里要结合选择支。

5、四个式子相乘,应该是每个括号里都拿出一个数进行乘,只要,x项的产生必然是其中一个括号里拿出x,另外的式子都拿出常数方可。答案不难得到,常数项的思维同上,至于你问的其余的情况在这种式子里不会涉及,退一步说如果涉及了,跟上面的思维是一样的,通常在二项式定理里涉及你说的其余的问题。

6、第一问根据条件显然是利用余弦定理然后使用均值不等式, 别的思维都是多余的,这是基本的思考问题的方式。第二问求范围,如果化成边,往下怎么进行?因此必须是利用三角形内角和定理,减少角,化简式子到Asin(ωx+φ)+B的形式,利用正弦函数的性质进行解答。

根据你问的问题,应该说你对自己的定位非常准确。其实,就这么几天了, 建议你把你感觉会但你得不到分的类型题做一个突破,然后就是保证你会的题目做对,你应该能考110左右。祝你成功!

2022全国乙卷理科数学试卷及答案解析

a2=2a1-2+2=2a1=2×2=4

a3=2a2-3+2=2a2-1=2×4-1=7

n≥2时,

an=2a(n-1)-n+2

an-n=2a(n-1)-2n+2=2a(n-1)-2(n-1)=2[a(n-1)-(n-1)]

(an-n)/[a(n-1)-(n-1)]=2,为定值

a1-1=2-1=1,数列{an-n}是以1为首项,2为公比的等比数列

an-n=1×2^(n-1)=2^(n-1)

an=n+2^(n-1)

bn=an/2^(n-1)=[n+2^(n-1)]/2^(n-1)=1+ n/2^(n-1)

Sn=b1+b2+...+bn=1+1/1+1+2/2+...+1+n/2^(n-1)=n+ 1/1+2/2+...+n/2^(n-1)

令Cn=1/1+2/2+...+n/2^(n-1)

则(1/2)Cn=1/2+2/2^2+...+(n-1)/2^(n-1)+n/2?

Cn-(1/2)Cn=(1/2)Cn=1+1/2+...+1/2^(n-1)-n/2?

=1×[1-(1/2)?]/(1-1/2)-n/2?

=2- (n+2)/2?

Cn=4-2(n+2)/2?=4- n/2^(n-1) -1/2^(n-2)

Sn=n+Cn=n+4- n/2^(n-1) -1/2^(n-2)

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括,高考注定将是莘莘学子生活之书里浓墨重彩的章节。下面我为大家带来2022全国乙卷理科数学试卷及答案解析,希望对您有帮助,欢迎参考阅读!

2022全国乙卷理科数学试卷及答案解析

高考数学解题技巧

1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学 方法 的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

3、最后,题目 总结 。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

高考数学知识点

第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题,这也是2008年高考已经考过的一点;

第五类重点问题,这类题时往往觉得有思路,但是没有答案,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学 知识点总结:抽样方法

随机抽样

简介

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:操作简便易行

缺点:总体过大不易实行

方法

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

步骤

一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

2022全国乙卷理科数学试题及答案解析相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国甲卷文科数学卷试题及答案一览

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国新高考2卷语文真题及答案解析

★ 2021年高考全国甲卷数学理科答案

★ 数学考试试卷及答案大全

★ 数学考试试卷及答案大全

★ 2017年中考数学试题附答案

文章标签: # 高考 # 答案 # 2022