您现在的位置是: 首页 > 教育改革 教育改革

高考函数考大题吗_高考函数考法

tamoadmin 2024-06-10 人已围观

简介1.求分式型函数最值的方法2.高中函数的题型,及如何复习?3.高考数学函数应该怎么学,要具体方法。4.数列与函数的的考法有哪些5.高中函数怎么学 有没有什么方法 。6.急需近几年高考二次函数的类型和解题方法,谢谢 二分法所属现代词,指的是数学领域的概念,在高中数学课程中会有学到,下面是我给大家带来的高考数学用二分法求函数零点的近似值知识点,希望对你有帮助。  高考数学用二分法求函数零点

1.求分式型函数最值的方法

2.高中函数的题型,及如何复习?

3.高考数学函数应该怎么学,要具体方法。

4.数列与函数的的考法有哪些

5.高中函数怎么学 有没有什么方法 。

6.急需近几年高考二次函数的类型和解题方法,谢谢

高考函数考大题吗_高考函数考法

 二分法所属现代词,指的是数学领域的概念,在高中数学课程中会有学到,下面是我给大家带来的高考数学用二分法求函数零点的近似值知识点,希望对你有帮助。

 高考数学用二分法求函数零点的近似值知识点

 二分法的定义:

 对于区间[a,b]上连续不断,且f(a)?f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似解的方法叫做二分法。

 给定精确度?,用二分法求函数f(x)的零点的近似值的步骤:

 (1)确定区间[a,b],验证f(a)?f(b)<0,给定精确度?;

 (2)求区间(a,b)的中点x1;

 (3)计算f(x1),

 ①若f(x1)=0,则就是函数的零点;

 ②若f(a)?f(x1)<0,则令b=x1(此时零点x0?(a,x1));

 ③若f(x1)?f(b)<0,则令a=x1(此时零点x0?(x1,b));

 (4)判断是否达到精确度?,即若|a-b|<?,则达到零点近似值a(或b);否则重复(2)-(4)。

 利用二分法求方程的近似解的特点:

 (1)二分法的优点是思考方法非常简明,缺点是为了提高解的精确度,求解的过程比较长,有些计算不用计算工具甚至无法实施,往往需要借助于科学计算器.

 (2)二分法是求实根的近似计算中行之有效的最简单的方法,它只要求函数是连续的,因此它的使用范围很广,并便于在计算机上实现,但是它不能求重根,也不能求虚根。

 关于用二分法求函数零点近似值的步骤应注意以下几点:

 ①第一步中要使区间长度尽量小,f(a),f(b)的值比较容易计算,且f(a).f(b)<0;

 ②根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的,对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方程f(x)=g(x)的根;

 ③设函数的零点为x0,则a<x0<b,作出数轴,在数轴上标出a,b,x0对应的点,如图,所以0<x0-a<b-a,a一b<x0-b<0.由于|a -b|<?,所以|x0 -a|<b-a<?,|x0 -b|<|a -b|<?即a或b作为函数的零点x0的近似值都达到给定的精确度?

 ④我们可用二分法求方程的近似解.由于计算量大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.

 数学用二分法求函数零点的近似值练习

 用二分法求方程的近似解

 在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如何才能迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多,每查一个点要爬一次电线杆,10 km长的线路,大约有200根电线杆,想一想,维修线路的工人师傅怎样工作才合理?

 基础巩固

 1.方程|x2-3|=a的实数解的个数为m,则m不可能等于(  )

 A.1 B.2 C.3 D.4

 解析:由图可知y=|x2-3|与y=a不可能是一个交点.

 答案:A

 2.对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0(a<b),则在(a,b)内f(x)(  )

 A.一定有零点 B.一定没有零点

 C.可能有两个零点 D.至多有一个零点

 解析:画y=f(x)的大致图象分析,也可取m,n,a,b的特殊值,很容易判断f(x)在(a,b)内可能有两个零点.

 答案:C

 3.已知函数f(x)在区间(0,a)上有唯一的零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为0,a2,0,a4,0,a8,则下列说法中正确的是(  )

 A.函数f(x)在区间0,a16无零点

 B.函数f(x)在区间0,a16或a16,a8内有零点

 C.函数f(x)在a16,a内无零点

 D.函数f(x)在区间0,a16或a16,a8内有零点,或零点是a16

 解析:由二分法求函数零点的原理可知选D.

 答案:D

 4.奇函数f(x)=x3+bx2+cx的三个零点是x1,x2,x3,满足x1x2+x2x3+x3x1=-2,则b+c=________.

 解析:∵f(x)为奇函数,?b=0,故f(x)=x3+cx有一个零点是0,不妨设x1=0,则x2,x3是x2+c=0的二根,故x2x3=c,由x1x2+x2x3+x3x1=-2得c=-2,故b+c=0-2=-2.

 答案:-2

 5.已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值:

 x123456

 f(x)1210-24-5-10

 函数f(x)在区间[1,6]上的零点至少有__________个.

求分式型函数最值的方法

复合函数

[编辑本段]

有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数:

x→u→y,这要看定义域:设ψ的定义域为U 。 f的值域为U,当U*?U时,称f与ψ 构成一个复合函数 , 例如 y=lgsinx,x∈(0,π)。此时sinx>0 ,lgsinx有意义 。但如若规定x∈(-π,0),此时sinx<0 ,lgsinx无意义 ,就成不了复合函数。

反函数

[编辑本段]

就关系而言,一般是双向的 ,函数也如此 ,设y=f(x)为已知的函数,若对每个y∈Y,有唯一的x∈X,使f(x)=y,这是一个由y找x的过程 ,即x成了y的函数 ,记为x=f -1(y)。称f -1为f的反函数。习惯上用x表示自变量 ,故这个函数仍记为y=f -1(x) ,例如 y=sinx与y=arcsinx 互为反函数。在同一坐标系中,y=f(x)与y=f -1(x)的图形关于直线y=x对称。

隐函数

[编辑本段]

若能由函数方程 F(x,y)=0 确定y为x的函数y=f(x),即F(x,f(x))≡0,就称y是x的隐函数。

思考:隐函数是否为函数?因为在其变化的过程中并不满足“一对一”和“多对一”

多元函数

[编辑本段]

设点(x1,x2,…,xn) ∈G?Rn,U?R1 ,若对每一点(x1,x2,…,xn)∈G,由某规则f有唯一的 u∈U与之对应:f:G→U,u=f(x1,x2,…,xn),则称f为一个n元函数,G为定义域,U为值域。

基本初等函数及其图像 幂函数、指数函数、对数函数、三角函数、反三角函数称为基本初等函数。

①幂函数:y=xμ(μ≠0,μ为任意实数)定义域:μ为正整数时为(-∞,+∞),μ为负整数时是(-∞,0)∪(0,+∞);μ=(α为整数),当α是奇数时为( -∞,+∞),当α是偶数时为(0,+∞);μ=p/q,p,q互素,作为的复合函数进行讨论。略图如图2、图3。

②指数函数:y=ax(a>0 ,a≠1),定义成为( -∞,+∞),值域为(0 ,+∞),a>0 时是严格单调增加的函数( 即当x2>x1时,) ,0<a<1 时是严格单减函数。对任何a,图像均过点(0,1),注意y=ax和y=()x的图形关于y轴对称。如图4。

③对数函数:y=logax(a>0), 称a为底 , 定义域为(0,+∞),值域为(-∞,+∞) 。a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数 。如图5。

以10为底的对数称为常用对数 ,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。

④三角函数:见表2。

正弦函数、余弦函数如图6,图7所示。

⑤反三角函数:见表3。双曲正、余弦如图8。

⑥双曲函数:双曲正弦(ex-e-x),双曲余弦?(ex+e-x),双曲正切(ex-e-x)/(ex+e-x) ,双曲余切( ex+e-x)/(ex-e-x)。

[编辑]补充

在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素(这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,谢谢)。函数的概念对于数学和数量学的每一个分支来说都是最基础的。

术语函数,映射,对应,变换通常都是同一个意思。

二次函数

[编辑本段]

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)</CA>

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

其中x1,2= -b±√b^2-4ac

注:在3种形式的互相转化中,有如下关系:

______

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

_______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax^2

y=a(x-h)^2

y=a(x-h)^2+k

y=ax^2+bx+c

顶点坐标

(0,0)

(h,0)

(h,k)

(-b/2a,sqrt[4ac-b^2]/4a)

对 称 轴

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

中考典例

1.(北京西城区)抛物线y=x2-2x+1的对称轴是( )

(A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2

考点:二次函数y=ax2+bx+c的对称轴.

评析:因为抛物线y=ax2+bx+c的对称轴方程是:y=-,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.

另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A.

2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:

甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.

请你写出满足上述全部特点的一个二次函数解析式: .

考点:二次函数y=ax2+bx+c的求法

评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2).

∵抛物线对称轴是直线x=4,

∴x2-4=4 - x1即:x1+ x2=8 ①

∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,

即:x2- x1= ②

①②两式相加减,可得:x2=4+,x1=4-

∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。

当ax1x2=±1时,x2=7,x1=1,a=±

当ax1x2=±3时,x2=5,x1=3,a=±

因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)

即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3

说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。

5.( 河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )

A、6 B、4 C、3 D、1

考点:二次函数y=ax2+bx+c的图象及性质的运用。

评析:由函数图象可知C点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。

图13-28

6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。

(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?

(2)第10分时,学生的接受能力是什么?

(3)第几分时,学生的接受能力最强?

考点:二次函数y=ax2+bx+c的性质。

评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x≤13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0≤x≤30,所以两个范围应为0≤x≤13;13≤x≤30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:

解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9

所以,当0≤x≤13时,学生的接受能力逐步增强。

当13<x≤30时,学生的接受能力逐步下降。

(2)当x=10时,y=-0.1(10-13)2+59.9=59。

第10分时,学生的接受能力为59。

(3)x=13时,y取得最大值,

所以,在第13分时,学生的接受能力最强。

9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);

(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为

:(55–40)×450=6750(元).

(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:

y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),

∴y与x的函数解析式为:y =–10x2+1400x–40000.

(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,

即:x2–140x+4800=0,

解得:x1=60,x2=80.

当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:

40×400=16000(元);

当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:

40×200=8000(元);

由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.

高中函数的题型,及如何复习?

对于函数值域问题,高考似乎不再单独命题,经常会以最值问题、换元形式出现,所以也不容忽视。尤其是小编最近在整理圆锥曲线问题,发现在圆锥曲线压轴题的第二问中经常会出现一类函数求最值或者值域问题,现整理如下,希望对学生们有帮助。这类函数就是分式型函数。这类问题有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次的形式,现在对这类问题进行整理汇总。

分析:解决这类问题,采取的方式是分离常数。

分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,可以画出函数图像,求出其值域。

小结:函数关系式是一次式比一次式的时候,发现在此类函数的实质是反比例函数通过平时得出的,因此可以作出其图像,去求函数的值域与最值。

根据函数单调性,可以做出此类函数的大致图像,因为这类函数在第一象限的图像象一个“红对勾”,所以称这类函数是对勾函数,通过图像求出其值域。当然也可以采用基本不等式来解决其图像。

分析:当定义域为R时,采用判别式法求此类函数的值域。当定义域不为R时,不应采用此法,否则有可能出错。此时,要根据函数关系的特征,采用其他方法。

分析:当定义域不为R时,不能采用判别式法求此类函数的值域。要根据函数关系的特征,采用分离常数转化成例5的形式。

以上是求此类函数的常见方法,但同学们在解题过程中。不要拘泥以上方法,要根据具体函数的特征采用相对应的方法,多思考,举一反三,那以后解决此类问题就很容易了。尤其是在圆锥曲线问题中,能够从复杂的关系式中找出此类问题的模具,进而轻松解决取值范围和最值问题。

高考数学函数应该怎么学,要具体方法。

首先要简单复习一下函数的各种性质(单调性、最大最小值、周期性、奇偶性等),接着回顾一下各种初等函数(二次函数、指数函数、对数函数、幂函数等,重点掌握二次函数的性质,因为经常会用到二次函数函数的性质,尤其是关于它的根的分布一定要掌握),再者要复习一下零点定理和函数的求导,导函数是一个解决函数问题很重要的工具,一定要掌握如何求它的单调性以及最值,最后进入实战,在实战中不断总结各种不同的函数题型及其解法,关于这个最好做一下前几年的高考题中关于函数的题,有可能的话还可以做一下其他省份的高考题。根据我自己的总结以及各年的高考题,高中中函数的题型一般放在倒数第二或第三大题的位置,难度一般不是很大,如果它放在最后一道题,那难度就会加大。一般来说,函数题型主要有三小问,第一问一般是求函数的单调区间(注意:首先要求出定义域(一般直接求导即可),这是做函数题型的第一原则,否则你极易犯错!第二小问可能是求极值或是最值,或者是求某个参数的范围(这时注意用数形结合和分类讨论思想的运用)。第三小问一般是证明不等式,一般是恒成立问题(方法:函数法或变量分离法,具体问题具体分析),当然第二和第三问可能会颠倒过来!总之函数是贯穿整个高中的主线,是占用非常重要的地位的,一定要掌握它!最后再强调一点,做这里题型头脑一定要灵活,要根据具体问题具体分析,最好平常多积累和总结一下这一方面的题型!好了,暂时先说那么多了,希望对你有所帮助!祝你高考成功!

数列与函数的的考法有哪些

函数是高考重点中的重点,也就是高考的命题当中确实含有以函数为纲的思想,怎样学好函数主要掌握以下几点。第一,要知道高考考查的六个重点函数,一,指数函数;二,对数函数;三,三角函数;四,二次函数;五,最减分次函数;六,双勾函数Y=X+A/X(A>0)。要掌握函数的性质和图象,利用这些函数的性质和图象来解题。另外,要总结函数的解题方法,函数的解题方法主要有三种,第一种方法是基本函数法,就是利用基本函数的性质和图象来解题;第二种方法是构造辅助函数;第三种方法是函数建模法。要特别突出函数与方程的思想,数形结合思想。

数形结合,从函数图象中找出关键.

函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。

综上,在学习函数的过程中,你要抓住其性质,而反馈到学习方法上你就应该预习(有能力的话最好能够自学)。

高中函数怎么学 有没有什么方法 。

函数与方程思想处理数列与方程、函数知识相交汇的问题,经常运用函数与方程的思想。数列可以视为一种定义域为正整数的有限子集的函数,当自变量从小到大取值时,其相对应的一系列函数值,因此在研究某些数列问题时,利用函数思想即可容易理解数列问题的本质,又可以简化运算。

分类讨论数学思想遇到数列中的交汇知识问题时,有时候需要利用分类讨论思想来解决较为简单。比如等比数列的公比为字母的求和问题,经常需要对公比是否为1进行分类讨论;由Sn求an时,常常需要对n的数值进行分类讨论等等;通过分类讨论,可以将复杂的数列问题简单化,但解题时,需要注意确定分类的标准。

急需近几年高考二次函数的类型和解题方法,谢谢

1。什么是函数:看书(概念得要自己好好理解,想稳定拿高分,概念第一,别听他人胡说啥数学概念高考不考,不用太在意,只会做题就行)。函数朴素的理解是将一组数(可能连续,可能不连续)对应到另一组数的方法[一元函数]

2。函数的三要素:自变量定义域,函数表达式,值域

3。会判断两个函数相同否:定义域得相同,表达式得要一样(等价),但自变量可以不同(只要考这种题,必有这种迷惑项),判断定义域的方法很多,一般的利用函数的性质(如对数函数真数部分大于0,幂函数开偶次方时底数得要大于等于0等)、分式的性质(分母不为0等)去判断。当两个函数的定义域相同,函数解析式等价时其值域定相同。当然有些时候需要单独写出函数在定义域内的值域,这种题的方法也很多。1)直接法:直接由定义域推出值域;2)配方法:适合二次函数;3)常数分离法:适合分子与分母次数相同的分式;4)换元法:适合有根式的情况;5)反函数法:适合分式;6)单调性法:当函数定义域连续或分段连续且函数为单调函数时,只须求出最值就能知道值域;7)数形结合法:当能画出函数图像时,借助函数图像更容易看出值域……还有对称法,周期法等

4。函数的性质:单调性(要会判断)、对称性(要会判断)、周期性(要会求)、奇偶性(要会判断)、连续性(高中的函数除过分段函数外都连续,关键是掌握分段函数的值域求法——分段讨论法然后求并集)等。会利用这些性质解决问题

5。常见函数:对数函数、指数函数、幂函数、二次函数、一次函数、三角函数;掌握它们的性质,尤其是掌握二次函数的实根分布问题,会配方,会因式分解,会常数分离,会画常见函数的函数图像。

6。函数导数:高考最后一道压轴题要拿全分,必须会函数导数——在理解概念的基础上记忆八种函数导数,会求复合函数的导数(由外而内,逐层求导)

---------------------------------------------------------------------------------------------------------------

需要理解的就是上面那些,下面我给你总结下我对高考数学函数考题的理解:

一。选择题、填空题涉及到的内容:1。复数分式函数化简及其共轭2。求复合函数定义域或值域3。考察对函数4大性质(单调、对称、周期、奇偶)4。二次函数实根分布问题5。考察对函数图像的理解6。求最值7。抽象函数的周期与对称性或抽象函数具体值求法8。三角函数

二。第二卷大题:17题多为三角函数或余弦定理题。18题多为概率和排列组合题或函数应用题。19题多为立体几何题。20题多为圆锥曲线题。21题为函数压轴题(主要考导数)

2006年高考中的二次函数问题聚焦

衡南县第五中学 周厚忠

二次函数、二次方程、二次不等式之间的一一对应关系,使它们之间网络交汇,形成一种互为工具,优势互补,为应用二次函数简化解决综合问题提供了方法和依据,也成为06年高考数学命题的亮丽的风景线.

1创造使用条件确定二次函数的表达式

(重庆) 已知定义域为R的函数f(x)满足f(f(x))- x2 +x)=f(x)- x2 +x..

(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);

(Ⅱ)设有且仅有一个实数x0,使得f(x0?)= x0,求函数f(x)的解析表达式.

思维展示

(Ⅰ) 认识对应法则和符合函数的意义,目标意识创造使用条件,特殊赋值切入,

因为对任意xεR,有f(f(x)- x2 + x)=f(x)- x2 +x,所以f(f(2)- 22+2)=f(2)- 22+2.

又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.;

赋值,若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.

(Ⅱ)认识对应法则的唯一性切入,

因为对任意xεR,有f(f(x))- x2 +x)=f(x)- x2 +x.

由题设有且只有一个实数x0,使得f(x0)=x0.,所以对任意xεR,有f(x)- x2 +x= x0.

在上式中令x= x0,有f(x0)-x + x0= x0,

又因为f(x0)= x0,所以x0- x =0,故x0=0或x0=1.

若x0=0,则f(x)- x2 +x=0,即f(x)= x2 –x. 但方程x2 –x=x有两上不同实根,与题设条件矛盾,故x2≠0.

若x2=1,则有f(x)- x2 +x=1,即f(x)= x2 –x+1.易验证该函数满足题设条件.

综上,所求函数为 f(x)= x2 –x+1(x R).

学习体验

如何创造使用对应法则?

认识对应法则f(f(x))- x2 +x)=f(x)- x2 +x.即f(x0)= x0 的意义,选用目标意识特殊赋值和反证法确定,其中整体变量的观念起着决定性的作用。

2二次函数在区间上的最值问题

(福建 )已知函数

(I)求 在区间 上的最大值

(II)是否存在实数 使得 的图象与 的图象有且只有三个不同的交点?若存在,求出 的取值范围;若不存在,说明理由。

思维展示

(I)配方研究区间和对成轴的位置关系切入,

当 即 时, 在 上单调递增,

当 即 时,

当 时, 在 上单调递减,

综上,

(II)注意定义域化归方程根的分布问题切入, 函数 的图象与 的图象有且只有三个不同的交点,即函数 的图象与 轴的正半轴有且只有三个不同的交点。借助导数解决。

当 时, 是增函数;当 时, 是减函数;

当 时, 是增函数;当 或 时,

当 充分接近0时, 当 充分大时,

要使 的图象与 轴正半轴有三个不同的交点,必须且只须

即 所以存在实数 ,使得函数 与 的图象有且只有三个不同的交点, 的取值范围为

学习体验

本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。

3 二次函数与不等式及方程之间的对应关系

(浙江)设 , ,f(0)f(1)>0,

求证:(Ⅰ)方程 有实根。(Ⅱ) -2< <-1;(III)设 是方程f(x)=0的两个实根,则. .

思维展示

从最高项系数分类切入,

(Ⅰ)若 a = 0, 则 b = -c , f (0) f (1) = c (3a + 2b + c ) ,与已知矛盾,

所以 a ≠ 0. 方程 = 0 的判别式 由条件 a + b + c = 0,

消去 b,得 ,故方程 f (x) = 0 有实根.

(Ⅱ)函数值构建不等式切入, (III)根与系数关系和系列问题上面的结论使用,

, ,所以 因为 所以 , 故 .

学习体验

本题主要考查二次函数的基本性质、不等式的基本性质与解法,以及综合运用所学知识分析和解决问题的能力。范围问题是个不等关系,借助题设条件构建不等式解出范围,这是不等式的一个重要应用,试结合本题好好领悟。

4 换元法化归二次在区间上问题分类求解

(江苏 )设a为实数,设函数 的最大值为g(a)。(Ⅰ)设t= ,求t的取值范围,并把f(x)表示为t的函数m(t);(Ⅱ)求g(a);(Ⅲ)试求满足 的所有实数a

思维展示

(Ⅰ)认识函数的实质,由确定定义域切入, 要使有t意义,必须1+x≥0且1-x≥0,即-1≤x≤1, ∴ t≥0 ① 则 t的取值范围是

由①得 ,整体变量换元沟通关系,∴m(t)=a( )+t=

(2)由题意知g(a)即为函数 的最大值。

注意到直线 是抛物线 的对称轴,从最高项系数入手,两级分类讨论。

(1)当a>0时,函数y=m(t), 的图象是开口向上的抛物线的一段,

由 <0知m(t)在 上单调递增,∴g(a)=m(2)=a+2

(2) 当a=0时,m(t)=t, ,∴g(a)=2.

(3) 当a<0时,函数y=m(t), 的图象是开口向下的抛物线的一段,

若 ,即 则

若 ,即 则

若 ,即 则

综上有

(3)分类构建方程验证求解

情形1:当 时 ,此时 , 由 ,与a<-2矛盾;

情形2:当 时,此时 , 解得, 与 矛盾;

情形3:当 时,此时 所以

情形4:当 时, ,此时 , 矛盾。

情形5:当 时, ,此时g(a)=a+2, ,由 解得 矛盾。

情形6:当a>0时, ,此时g(a)=a+2, 由 ,由a>0得a=1.

综上知,满足 的所有实数a为 或a=1。

学习体验

研究函数让定义域先行往往能寻求到思维的切入点,本题认识函数揭示的两变量的唯一对应关系,求定义域对应法则条件下平方,换元沟通关系,将问题化归二次函数在区间上的最值研究和构建方程待定参数,这些都是高考命题的热点,应深入研究,不断提高应用函数解决问题的能力。

最高项系数含参数时采用两级分类的方法,第一级系数为0和不为零,不为0再分两类,在这两类下都化归为二次二次在区间上的问题,研究对称轴和区间的关系分3类研究,应学会这种思维方法,对于复杂的问题的研究达到“既不重复又不遗漏”使“分类完备”。

本小题主要考查函数、方程等基本知识,考查分类讨论的数学思想方法和综合运用数学知识分析问题、解决问题的能力,你体会到了吗?

文章标签: # 函数 # 二次 # x2