您现在的位置是: 首页 > 教育改革 教育改革

历年高考数学,历年高考数学难度排名一览表

tamoadmin 2024-07-19 人已围观

简介1.广东2023高考数学难吗2.2022高考数学大题题型总结_数学大题题型3.2003年高考数学特别难,是因为那年高考试卷被盗启用备用卷吗? 每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全国新高考Ⅰ卷文科数学试题及答案解析,欢迎大家阅读。 2022全国新高考Ⅰ卷文科数学试题及答案解析 2022全国新高考Ⅰ卷文科数学试题还未出炉,待高考

1.广东2023高考数学难吗

2.2022高考数学大题题型总结_数学大题题型

3.2003年高考数学特别难,是因为那年高考试卷被盗启用备用卷吗?

历年高考数学,历年高考数学难度排名一览表

每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全国新高考Ⅰ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅰ卷文科数学试题及答案解析

2022全国新高考Ⅰ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅰ卷文科数学试题,供大家对照、估分、模拟使用。

高考数学必考知识点

圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (_-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 _2+y2+D_+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2p_ y2=-2p_ _2=2py _2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

高考数学答题窍门

1、审题要慢,答题要快

有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。

2、运算要准,胆子要大

高考没有足够的时间让你反复验算,更不容你一再地变换解题 方法 ,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。

3、先易后难,敢于放弃

能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。

4、先熟后生,合理用时

面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。

2022全国新高考Ⅰ卷文科数学试题及答案解析相关 文章 :

★ 2022年高考乙卷数学真题试卷

★ 2022年新高考Ⅱ卷语文题目与答案解析

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022全国高考试卷分几类

★ 2022高考历年历史试卷分析(全国1卷)

★ 2022高考数学必考知识点归纳最新

★ 2022高考数学答题技巧

★ 2022年高考数学必考知识点总结最新

★ 2021新高考全国1卷数学真题及答案

★ 2022高考文综理综各题型分数值一览

广东2023高考数学难吗

2023高考数学哪个卷最难:上海卷。

2023年在高考命题将会有相应的调整。当中有一项比较重要的内容就是:为了能让新高考省份实现平稳过渡,确保这些省份的考生能够适应新高考的内容,促进高考试题的平稳,坚决不能出现偏题和怪题,也不能出现超纲内容。相关负责人还表示,未来高考命题会局限在课本的主干知识和重点知识,避免出现冷门知识或者超纲知识。

2023年高考数学难度趋势

2022年新高考1卷的数学题目是很难的,引发了网友们的热议,也让一些高考生没能在考试中取得理想的成绩。按照教育部对于出题的要求,2023年的高考难度大概率会保持目前的趋势,难度不会大幅提升,但也不会比2022年简单太多。

1、首先,依照教育部的要求,高考数学题目可能会与现实中的复杂场景结合。这就要求考生不但具备出色的逻辑推理、计算能力,也对同学们的阅读能力、理解能力提出了很高的要求,做到举一反三是非常重要的。题目的灵活度增加,数学基础如果不够扎实可能会觉得很难,但如果应用能力强,也可能会觉得题目不难。

2、其次,对于数学的考察会更强调数学思想和方法。这就要求同学们在学习过程中掌握数学的核心,如逻辑思维能力、计算能力等。务必要吃透每一个方法,如果解题的时候总是一知半解、似懂非懂,高考的时候很可能会吃苦头。

综合以上,2023年的高考和2022年对比起来差异不会太大,可能难度稍有提升。所以同学们在最后的几个月时间里一定要回归课本,把考纲内的数学基础知识掌握牢固,提升自己举一反三的能力,不必纠结一些难题和偏题。

2022高考数学大题题型总结_数学大题题型

2023广东高考数学试题难度适中。

广东的考生结束数学考试后表示,今年的广东高考数学试题难度还可以,难度在接受的范围内。2023年广东高考数学试卷总体来说不难。

1、高考数学试题难度因素

高考数学试题的难度与多个因素有关,包括出题人员的水平和经验、试题的命制过程、试卷的整体难度安排等等。此外,数学试题本身也有其复杂和抽象性,需要考生具备一定的数学基础和思维能力才能应对。

2、广东高考数学历年趋势

广东高考数学试题的难易程度一直受到考生关注。通常,广东高考数学试卷会涉及各个考点和知识点,包括数列、函数、三角函数等等。过去几年的广东高考数学试卷难度虽然逐年提高,但整体难度还是保持在合理范围内。

3、如何备考数学高考

备考数学高考需要从多个方面入手,包括梳理知识点、做好试题分析、拓展解题思路等等。此外,要注重日常练习和积累,通过做题、讲解、交流等方式提高数学水平。最后,还要保持积极的心态和良好的考试状态。

4、数学的实际应用价值

数学作为一门学科,已经成为现代社会不可或缺的基础。它被广泛应用于工业、商业、科学、技术等领域。除此之外,数学还有助于培养人们的逻辑思维能力和创新精神,是人类文明进步的重要组成部分。

5、数学教育的重要性

数学教育对于每个人都是非常重要的,因为它不仅有助于提高数学水平,更能锻炼思维能力、逻辑能力和创新能力。在学习过程中,不断挑战自己、克服难点和解决问题,也能培养出坚韧不拔的精神。

6、数学并不可怕

有些人认为数学很难,容易产生畏惧感。但实际上,只要用心学习,多积累经验,数学也并不可怕。此外,数学不仅是一门学科,更是一种理性思维方式,对培养思维能力、提高科学素养都有着重要作用。

2003年高考数学特别难,是因为那年高考试卷被盗启用备用卷吗?

普通高中学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,一般是每年6月7日-8日考试。 参加考试的对象一般是全日制普通高中 毕业 生和具有同等学历的中华人民共和国公民,下面是我整理的关于2022高考数学大题题型 总结 ,欢迎阅读!

2022高考数学大题题型总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机的发生存在着规律性和随机概率的意义。

6.了解等可能件的概率的意义,会用排列组合的基本公式计算一些等可能件的概率。

7.了解互斥、相互独立的意义,会用互斥的概率加法公式与相互独立的概率乘法公式计算一些的概率。

8.会计算在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

高考数学题型特点和答题技巧

1.选择题——“不择手段”

题型特点:

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解题策略:

(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2.填空题——“直扑结果”

题型特点:

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。

解题策略:

由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;

二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;

三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

3.解答题——“步步为营”

题型特点:

解答题与填空题比较,同居提供型的试题,但也有本质的区别。

首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;

其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

评分办法:

数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷 经验 的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”:

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。

有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。

有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。

因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;

如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的性的步骤。实质性的步骤未找到之前,找性的步骤是明智之举。

如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

(3)能力不同,要求有变:

由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。

针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!

针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。

针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

高中数学答题技巧

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

2022高考数学大题题型总结_数学大题题型相关 文章 :

★ 高考数学答题技巧方法及易错知识点

★ 做好高考数学题的方法技巧有哪些

★ 2022高三数学学习方法总结

★ 2022年高考数学前十天如何复习最有效

★ 高三数学二轮复习策略2022

★ 高考数学知识点最新归纳

★ 2022高三数学知识点整理

★ 2022年高三数学第二轮复习方法

★ 2022年高考复习技巧及方法(最新)

★ 高三数学知识点总结框架

说起03年高考,很多人印象颇为深刻,首先是从那一年开始高考的考试时间从原来的7月份提前到了6月份,而且那一年非典爆发,当时很多人都推测高考时间会不会还是执行原来的时间,但是并没有,高考按照原定如期在6月份举行。

其次是那一年的数学卷特别难,难到不少学生看到卷子就崩溃了,考完之后操场上到处是抱头痛哭的考生,考试结束甚至还有学校专门召回考生做心理辅导,勉励学生明年再来。分数出来以后说明是真的难,150分的卷子,平均只有五十几分,能考六七十分就算是学霸了,考个八九十分那就非常牛了。很多人把那一年的数学卷变态难归结于是因为那一年高考试卷被盗,启用了备用卷造成的,但是亲历者却告诉我们:并非如此!

高考是我国最严肃的考试,也是改变很多人命运的考试,为了保证高考的公平性,国家从出题到试题运送,保管各个环节都有严格的保密和管理制度。高考历年以来也几乎没有出现过试题泄密的情况。为了保证考试的严肃性,国家甚至把高考行为入刑,《刑法修正案(九)》中明确指出:在高考中组织的,将处以三年以下的有期徒刑或拘役,情节严重的,将面临三年以上的有期徒刑。

高考组织后果如此严重,所以一般人也不会去想着盗窃高考试卷,影响太大,后果承受不起。但是,就在2003年,还真就有人就冒天下之大不韪这么干了,他还是个应届的考生。

2003年6月5日,高考前一天,四川省南充市南部县高考工作人员对存放高考试卷的县保密室进行检查时,发现试卷有被人动过的痕迹,立刻封锁了现场,进行报告。刑警通过调查取证,认定保密室保险柜被人撬开,语文,数学,英语,文综,理综试卷各被盗一份。

根据认真调查核实,认定县保密室保密柜被人撬开,语文卷、数学卷、英语卷、文综卷和理综卷各被盗一份。事情立即引起了四川省、教育部、院的高度重视,四川省、教育部、公安部等大量办案人员乘坐专机来到南部,多名省部级领导亲自坐镇。中国最著名的刑侦专家、一流的痕迹专家悉数到场,侦查力度之大极其罕见。怎么处理,高考是否延期,是否启用备用试卷,大家都在等待四川的调查结果。

当天,南部县网络信号一度中断,全县打印店,复印店被重点监控。根据调查,没有证据显示高考试题大规模泄密,事情还在可控范围,于是高考如期举行,也没有启用备用卷,从时间上来说,也来不及启用。

但是调查并没有停止,如果在6月24日高考分数公布之前,不能水落石出的话,高考的公平性将会受到质疑,所以调查组压力很大。的是在分数公布的前夕,调查有了突破,一名叫做杨博的考生去学校填志愿,在摁指纹的时候,将502胶水涂在了手上,这引起了调查人员的注意。经过指纹对比,确定**试卷的正是杨博。据杨博的交代,他自己平时成绩不怎么理想,但是志向却不小,为了考上好的学校,产生了盗窃试卷的想法。事发之前,他多次到保密室附近踩点,并做好精心的准备,案发当日**进入保密室**试卷。

杨博当年高考分数分,高出分数线60多分,但是显然大学是上不了了,因为盗杨博被判处有期徒刑7年,当地多部门领导也被处分

文章标签: # 高考 # 数学 # 题目